DOI QR코드

DOI QR Code

Setting Time, Compressive Strength and Drying Shrinkage of Mortar with Alpha-Calcium Sulfate Hemihydrate

α형 반수석고를 치환한 모르타르의 응결 및 압축강도, 건조수축 특성

  • Received : 2017.06.02
  • Accepted : 2017.08.24
  • Published : 2017.09.01

Abstract

In this study, to evaluate the setting time, compressive strength and drying shrinkage of ordinary Portland cement and Portland blast-furnace slag cement mortar with 0, 10, 20, 30 wt.% alpha-calcium sulfate hemihydrate. As a results, as the replacement ratio of alpha-calcium sulfate hemihydrate increased, the initial setting time of ordinary Portland cement and Portland blast-furnace slag cement mortar was faster. In addition, the compressive strength decreased with increasing replacement ratio of alpha-calcium sulfate hemihydrate in both ordinary Portland cement mortar and Portland blast-furnace slag cement mortar. The strength development of Portland blast-furnace slag cement mortar with alpha-calcium sulfate hemihydrate was effective than that of ordinary Portland cement mortar. On the other hand, in the case of the mortar with alpha-calcium sulfate hemihydrate, it was confirmed that shrinkage deformation was reduced at the early age by growth pressure of needle-shaped ettringite crystals produced by incorporation of alpha-calcium sulfate hemihydrate. However, the effect of inhibiting shrinkage deformation of mortar with alpha-calcium sulfate hemihydrate was not significant as the age passed. Therefore, it is considered that the alpha-calcium sulfate hemihydrate is useful as a construction material.

${\alpha}$형 반수석고는 생산방법이 복잡하고, 대량 연속 생산이 곤란하며, 재료 단가가 높기 때문에 건설재료로써 활용범위가 크지 않았으나, 최근 화력발전소의 배연탈황석고를 활용하여 경제적으로 ${\alpha}$형 반수석고를 제조하는 기술이 실용화되고 있다. 이에 본 연구에서는 응결 시작 시간이 빠르고 재령 초기 팽창변형이 발생하는 ${\alpha}$형 반수석고의 특징에 주목하여, ${\alpha}$형 반수석고를 10, 20, 30 wt.% 치환한 보통포틀랜드시멘트 및 고로슬래그시멘트 모르타르를 제조한 후 응결 및 압축강도 특성, 건조수축을 검토하였다. 실험 결과, ${\alpha}$형 반수석고의 치환율이 증가할수록 보통포틀랜드시멘트 모르타르 및 고로슬래그시멘트 모르타르의 초결시간이 빨라지는 경향을 확인할 수 있었다. 또한, 보통포틀랜드시멘트 모르타르와 고로슬래그시멘트 모르타르 모두 ${\alpha}$형 반수석고의 치환율이 증가할수록 압축강도가 저하되는 경향을 보였으며, 보통포틀랜드 시멘트보다 고로슬래그시멘트에서 ${\alpha}$형 반수석고의 압축강도 발현이 유리한 것으로 나타났다. 한편, ${\alpha}$형 반수석고를 치환한 모르타르의 경우 ${\alpha}$형 반수석고의 혼입에 의해 생성된 에트링가이트 침상결정의 성장압에 의해 초기재령에서 수축변형이 저감되는 것을 확인할 수 있었으며, 초기 재령에서 수축변형의 억제 효과는 분명하지만, 재령이 지남에 따라 ${\alpha}$형 반수석고를 치환하지 않은 조건과 변형의 차이는 다시 감소하는 경향을 보였다. 따라서 ${\alpha}$형 반수석고를 모르타르에 적용할 경우 강도는 다소 저하하지만, 응결 촉진 및 수축변형 억제에 큰 효과가 있기 때문에 건설재료로써 활용 가치가 높을 것으로 판단된다.

Keywords

References

  1. Amathieu, L., and Boistelle, R. (1988), Crystallization Kinetics of Gypsum from Dense Suspension of Hemihydrate in Water, Journal of Crystal Growth, 88(2), 183-192. https://doi.org/10.1016/0022-0248(88)90275-8
  2. Badens, E., Veesler, S., and Boistelle, R. (1999), Crystallization of Gypsum from Hemihydrate in Presence of Additives, Journal of Crystal Growth, 198, 704-709.
  3. Chappuis, J. (1999), A New Model for a Better Understanding of the Cohesion of Hardened Hydraulic Materials, Colloids and surfaces A: Physicochemical and engineering aspects, 156(1), 223-241. https://doi.org/10.1016/S0927-7757(99)00075-8
  4. Deutsch, Y., Nathan, Y., and Sarig, S. (1994), Thermogravimetric Evaluation of the Kinetics of the Gypsum-hemihydrate-soluble Anhydrite Transitions, Journal of Thermal Analysis and Calorimetry, 42(1), 159-174. https://doi.org/10.1007/BF02546998
  5. Guan, B., Yang, L., Fu, H., Kong, B., Li, T., and Yang, L. (2011), ${\alpha}$-Calcium Sulfate Hemihydrate Preparation from FGD Gypsum in Recycling Mixed Salt Solutions, Chemical engineering journal, 174(1), 296-303. https://doi.org/10.1016/j.cej.2011.09.033
  6. Guan, B., Yang, L., Wu, Z., Shen, Z., Ma, X., and Ye, Q. (2009), Preparation of ${\alpha}$-calcium Sulfate Hemihydrate from FGD Gypsum in K, Mg-containing Concentrated $CaCl_2$ Solution Under Mild Conditions, Fuel, 88(7),1286-1293. https://doi.org/10.1016/j.fuel.2009.01.004
  7. Guan, B., Ye, Q., Zhang, J., Lou, W., and Wu, Z. (2010), Interaction between ${\alpha}$-calcium Sulfate Hemihydrate and Superplasticizer from the Point of Adsorption Characteristics, Hydration and Hardening Process, Cement and Concrete Research, 40(2), 253-259. https://doi.org/10.1016/j.cemconres.2009.08.027
  8. Hand, R. J. (1997), Calcium Sulphate Hydrates: A Review, British ceramic transactions, 96(3), 116-120.
  9. Jiang, G., Wang, H., Chen, Q., Zhang, X., Wu, Z., and Guan, B. (2016), Preparation of Alpha-calcium Sulfate Hemihydrate from FGD Gypsum in Chloride-free $Ca(NO_3)_2$ Solution Under Mild Conditions, Fuel, 174, 235-241. https://doi.org/10.1016/j.fuel.2016.01.073
  10. Lea, F. M. (1970), The chemistry of cement and concrete.
  11. Lee, K., Kim, G., Lee, B., Kim, R., and Shin, K. (2015). Evaluation of hardening properties and dry shrinkage of non-sintered binder based floor mortar utilizing alpha-hemihydrate gypsum, Journal of the Korea Institute of Building Construction, 15(4), 359-365. https://doi.org/10.5345/JKIBC.2015.15.4.359
  12. Lewry, A. J., and Williamson, J. (1994), The Setting of Gypsum Plaster, Journal of materials science, 29(23), 5524-5528. https://doi.org/10.1007/BF00349943
  13. Miao, M., Feng, X., Wang, G., Cao, S., Shi, W., and Shi, L. (2015), Direct Transformation of FGD Gypsum to Calcium Sulfate Hemihydrate Whiskers: Preparation, Simulations, and Process Analysis, Particuology, 19, 53-59. https://doi.org/10.1016/j.partic.2014.04.010
  14. Reynaud, P., Saadaoui, M., Meille, S., and Fantozzi, G. (2006), Water Effect on Internal Friction of Set Plaster, Materials Science and Engineering: A, 442(1), 500-503. https://doi.org/10.1016/j.msea.2006.01.152
  15. Rinaudo, C., and Boistelle, R. (1991), Gypsum Grown Under Pressure from Dense Suspension of $CaSO_4.0.67H_2O$, Journal of applied crystallography, 24(2),129-134. https://doi.org/10.1107/S0021889890011451
  16. Singh, N. B., and Middendorf, B. (2007), Calcium Sulphate Hemihydrate Hydration Leading to Gypsum Crystallization, Progress in Crystal Growth and Characterization of Materials, 53(1), 57-77. https://doi.org/10.1016/j.pcrysgrow.2007.01.002

Cited by

  1. Effects of Steelmaking Slag and Moisture on Electrical Properties of Concrete vol.13, pp.12, 2017, https://doi.org/10.3390/ma13122675