• Title/Summary/Keyword: heme oxygenase-1 (HO-1)

Search Result 279, Processing Time 0.023 seconds

Diagnostic Role of Bile Pigment Components in Biliary Tract Cancer

  • Keun Soo Ahn;Koo Jeong Kang;Yong Hoon Kim;Tae-Seok Kim;Kwang Bum Cho;Hye Soon Kim;Won-Ki Baek;Seong-Il Suh;Jin-Yi Han
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.674-681
    • /
    • 2023
  • Bile pigment, bilirubin, and biliverdin concentrations may change as a results of biliary tract cancer (BTC) altering the mechanisms of radical oxidation and heme breakdown. We explored whether changes in bile pigment components could help distinguish BTC from benign biliary illness by evaluating alterations in patients with BTC. We collected bile fluid from 15 patients with a common bile duct stone (CBD group) and 63 individuals with BTC (BTC group). We examined the bile fluid's bilirubin, biliverdin reductase (BVR), heme oxygenase (HO-1), and bacterial taxonomic abundance. Serum bilirubin levels had no impact on the amounts of bile HO-1, BVR, or bilirubin. In comparison to the control group, the BTC group had considerably higher amounts of HO-1, BVR, and bilirubin in the bile. The areas under the curve for the receiver operating characteristic curve analyses of the BVR and HO-1 were 0.832 (p<0.001) and 0.891 (p<0.001), respectively. Firmicutes was the most prevalent phylum in both CBD and BTC, according to a taxonomic abundance analysis, however the Firmicutes/Bacteroidetes ratio was substantially greater in the BTC group than in the CBD group. The findings of this study showed that, regardless of the existence of obstructive jaundice, biliary carcinogenesis impacts heme degradation and bile pigmentation, and that the bile pigment components HO-1, BVR, and bilirubin in bile fluid have a diagnostic significance in BTC. In tissue biopsies for the diagnosis of BTC, particularly for distinguishing BTC from benign biliary strictures, bile pigment components can be used as additional biomarkers.

Anti-inflammatory Effect of the Cirsium japonicum var. ussuriense 70% Ethanolic Extract in RAW264.7 Cells by Heme oxygenase-1 Expression (엉겅퀴 70% 에탄올 추출물의 RAW264.7 세포에서 Heme oxygenase-1 발현을 통한 항염증 효과)

  • Lee, Dong-Sung;Kim, Kyoung-Su;Li, Bin;Choi, Hyun-Gyu;Keo, Samell;Jun, Ki-Young;Park, Jun-Hyeong;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Cirsium japonicum var. ussuriense has long been used in herbal medicine for the treatment of arthritis, dyspepsia, and bleeding in Korea. In the present study, we investigated anti-inflammatory effects of C. japonicum var. ussuriense against lipopolysaccharide(LPS)-induced activation in RAW264.7 cells by the expression of heme oxygenase (HO)-1. The 70% EtOH extract of the aerial parts of C. japonicum var. ussuriense (CJE), showed the potent anti-inflammatory effects on LPS-induced inflammation in RAW264.7 cells. The anti-inflammatory effect of CJE was demonstrated by the suppression of pro-inflammatory mediators, including pro-inflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2). Furthermore CJE induced HO-1 expression through nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and increased HO activity in RAW264.7 macrophages. The effects of CJE on LPS-induced NO and $PGE_2$ productions were partially reversed by an HO-1 inhibitor, tin protoporphyrin (SnPP). Therefore, it is suggested that CJE-induced HO-1 expression plays a role of the resulting anti-inflammatory effects in macrophages. These results suggest that CJE may be a promising candidate for the treatment of inflammatory diseases.

Neuroprotective mechanisms of dieckol against glutamate toxicity through reactive oxygen species scavenging and nuclear factor-like 2/heme oxygenase-1 pathway

  • Cui, Yanji;Amarsanaa, Khulan;Lee, Ji Hyung;Rhim, Jong-Kook;Kwon, Jung Mi;Kim, Seong-Ho;Park, Joo Min;Jung, Sung-Cherl;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.121-130
    • /
    • 2019
  • Glutamate toxicity-mediated mitochondrial dysfunction and neuronal cell death are involved in the pathogenesis of several neurodegenerative diseases as well as acute brain ischemia/stroke. In this study, we investigated the neuroprotective mechanism of dieckol (DEK), one of the phlorotannins isolated from the marine brown alga Ecklonia cava, against glutamate toxicity. Primary cortical neurons ($100{\mu}M$, 24 h) and HT22 neurons (5 mM, 12 h) were stimulated with glutamate to induce glutamate toxic condition. The results demonstrated that DEK treatment significantly increased cell viability in a dose-dependent manner ($1-50{\mu}M$) and recovered morphological deterioration in glutamate-stimulated neurons. In addition, DEK strongly attenuated intracellular reactive oxygen species (ROS) levels, mitochondrial overload of $Ca^{2+}$ and ROS, mitochondrial membrane potential (${\Delta}{\Psi}_m$) disruption, adenine triphosphate depletion. DEK showed free radical scavenging activity in the cell-free system. Furthermore, DEK enhanced protein expression of heme oxygenase-1 (HO-1), an important anti-oxidant enzyme, via the nuclear translocation of nuclear factor-like 2 (Nrf2). Taken together, we conclude that DEK exerts neuroprotective activities against glutamate toxicity through its direct free radical scavenging property and the Nrf-2/HO-1 pathway activation.

Oxymatrine inhibits the pyroptosis in rat insulinoma cells by affecting nuclear factor kappa B and nuclear factor (erythroid-derived 2)-like 2 protein/heme oxygenase-1 pathways

  • Gao, Jingying;Xia, Lixia;Wei, Yuanyuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.165-174
    • /
    • 2022
  • As the mechanism underlying glucose metabolism regulation by oxymatrine is unclear, this study investigated the effects of oxymatrine on pyroptosis in INS-1 cells. Flow cytometry was employed to examine cell pyroptosis and reactive oxygen species (ROS) production. Cell pyroptosis was also investigated via transmission electron microscopy and lactate dehydrogenase (LDH) release. Protein levels were detected using western blotting and interleukin (IL)-1β and IL-18 secretion by enzyme-linked immunosorbent assay. The caspase-1 activity and DNA-binding activity of nuclear factor kappa B (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 protein (Nrf2) were also assessed. In the high glucose and high fat-treated INS-1 cells (HG + PA), the caspase-1 activity and LDH content, as well as Nod-like receptor family pyrin domain containing 3, Gsdmd-N, caspase-1, apoptosis-associated speck-like protein containing a CARD, IL-1β, and IL-18 levels were increased. Moreover, P65 protein levels increased in the nucleus but decreased in the cytoplasm. Oxymatrine attenuated these effects and suppressed high glucose and high fat-induced ROS production. The increased levels of nuclear Nrf2 and heme oxygenase-1 (HO-1) in the HG + PA cells were further elevated after oxymatrine treatment, whereas cytoplasmic Nrf2 and Keleh-like ECH-associated protein levels decreased. Additionally, the elevated transcriptional activity of p65 in HG + PA cells was reduced by oxymatrine, whereas that of Nrf2 increased. The results indicate that the inhibition of pyroptosis in INS-1 cells by oxymatrine, a key factor in its glucose metabolism regulation, involves the suppression of the NF-κB pathway and activation of the Nrf2/HO-1 pathway.

Gliotoxin Protects Trinitrobenzene Sulfonic Acid-Induced Colonic Damage through Induction of Heme Oxygenase-1

  • Oh, Jaemin;Hur, Jungmu;Kim, Yourim;Kwon, Young-Mi;Kim, Kyungsuk;Chung, Yeuntai;Choi, Minkyu
    • Toxicological Research
    • /
    • v.20 no.4
    • /
    • pp.293-298
    • /
    • 2004
  • Background: Crohn's disease is characterized by a chronic relapsing inflammation of the bowel. Gliotoxin has been known to play strong immunosuppressive properties, while mechanisms for its anti-inflammatory actions are not completely understood. Here, we investigated the effects of gliotoxin in trinitrobenzene sulfonic acid (TNBS) induced mouse colitis, an animal model of Crohn's disease. Results: Gliotoxin dramatically improved clinical and histopathological symptoms in accompanied with reduced expression of TNF-$\alpha$, IL-1$\beta$, and ICAM-1 protein levels in TNBS induced colitis. Interestingly Gliotoxin induced Heme oxygenase-1 (HO-1) and the HO-1 inducer cobalt protoporphyrin IX (CoPPIX) completely mimicked the protective effects of gliotoxin in TNBS induced colitis mice. In contrast, the HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX) could reverse the anti-inflammatory effects of gliotoxin and CoPPIX. Conclusions: Gliotoxin is a potential therapeutic agent targeting for the treatment of Crohn's disease by inducing HO-1.

Involvement of Peroxynitrite in NO Donor-Induced HO-1 Expression in Rat Articular Chondrocytes (흰쥐 관절연골세포에서 NO donor에 의해 유도된 HO-1 발현에서 peroxynitrite의 관련성 연구)

  • Song, Ju-Dong;Kim, Kang-Mi;Kim, Jong-Min;Yoo, Young-Hyun;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.486-493
    • /
    • 2011
  • Nitric oxide (NO) donors are a potent inducer of heme oxygenase-1 (HO-1). However, it is unclear whether or not HO-1 expression induced by NO donors is a direct consequence of NO released by NO donors. Here, we investigated the effects of NO donors on the expression of HO-1 in primary rat articular chondrocytes. NO donors (SIN-1, SNAP, and SNP) significantly induced the accumulation of HO-1 protein accompanied by an increase in HO-1 mRNA. NO donor-induced HO-1 expression exerted cytoprotection against NO and/or superoxide-induced cell death. Guanylate cyclase signaling was not associated with Nrf2 and HO-1 expression in NO donor-treated chondrocytes. Interestingly, NO scavenger carboxy-PTIO and SOD mimetic TEMPOL markedly inhibited NO donor-induced HO-1 expression in chondrocytes. In addition, NO donor-induced HO-1 expression was completely abrogated by the peroxynitrite scavenger MnTBAP. Since peroxynitrite can be physiologcally formed in the cell through reaction of NO with superoxide, we analyzed whether or not peroxynitrite could directly induce HO-1 expression in chondrocytes. Peroxynitrite treatment in chondrocytes evoked doseand time-dependent Nrf2 and HO-1 expression. These results indicate that HO-1 expression induced by NO donors in rat articular chondrocytes is due to NO-mediated peroxynitrite rather than NO.

Capsaicin Ameliorates Cisplatin-Induced Renal Injury through Induction of Heme Oxygenase-1

  • Jung, Sung-Hyun;Kim, Hyung-Jin;Oh, Gi-Su;Shen, AiHua;Lee, Subin;Choe, Seong-Kyu;Park, Raekil;So, Hong-Seob
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.234-240
    • /
    • 2014
  • Cisplatin is one of the most potent chemotherapy agents. However, its use is limited due to its toxicity in normal tissues, including the kidney and ear. In particular, nephrotoxicity induced by cisplatin is closely associated with oxidative stress and inflammation. Heme oxygenase-1(HO-1), the rate-limiting enzyme in the heme metabolism, has been implicated in a various cellular processes, such as inflammatory injury and anti-oxidant/oxidant homeostasis. Capsaicin is reported to have therapeutic potential in cisplatin-induced renal failures. However, the mechanisms underlying its protective effects on cisplatin-induced nephrotoxicity remain largely unknown. Herein, we demonstrated that administration of capsaicin ameliorates cisplatin-induced renal dysfunction by assessing the levels of serum creatinine and blood urea nitrogen (BUN) as well as tissue histology. In addition, capsaicin treatment attenuates the expression of inflammatory mediators and oxidative stress markers for renal damage. We also found that capsaicin induces HO-1 expression in kidney tissues and HK-2 cells. Notably, the protective effects of capsaicin were completely abrogated by treatment with either the HO inhibitor ZnPP IX or HO-1 knockdown in HK-2 cells. These results suggest that capsaicin has protective effects against cisplatin-induced renal dysfunction through induction of HO-1 as well as inhibition oxidative stress and inflammation.

A Formulated Korean Red Ginseng Extract Inhibited Nitric Oxide Production through Akt- and Mitogen Activated Protein Kinase-dependent Heme Oxygenase-1 Upregulation in Lipoteichoic Acid-stimulated Microglial Cells (홍삼추출액은 lipoteichoic acid로 자극된 소교세포에서 Akt 및 MAPK 의존적으로 heme oxygenase-1 발현을 유도함으로써 NO 생성을 억제함)

  • Shin, Ji Eun;Lee, Kyungmin;Kim, Ji-Hee;Madhi, Iskander;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.402-409
    • /
    • 2019
  • Korean red ginseng made from steaming and drying fresh ginseng has long been used as a traditional herbal medicine due to its effects on the immune, endocrine, and central nerve systems and its anti-inflammatory activity. In this study, we investigated the molecular mechanism responsible for the anti-inflammatory effects of a formulated Korean red ginseng extract (RGE) in response to lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria. RGE inhibited LTA-induced nitric oxide (NO) secretion and inducible nitric oxide synthase (iNOS) expression in BV-2 microglial cells, without affecting cell viability. RGE also inhibited nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65 and degradation of $I{\kappa}B-{\alpha}$. In addition, RGE increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner, and the inhibitory effect of RGE on iNOS expression was abrogated by small interfering RNA-mediated knockdown of HO-1. Moreover, RGE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. Furthermore, the phosphoinositide-3-kinase (PI-3K) inhibitor and mitogen-activated protein kinase (MAPK) inhibitors suppressed RGE-mediated expression of HO-1, and RGE enhanced the phosphorylation of Akt, extracellular signal-regulated kinases (ERKs), p38, and c-JUN N-terminal kinases (JNKs). These results suggested that RGE suppressed the production of NO, a proinflammatory mediator, by inducing HO-1 expression via PI-3K/Akt- and MAPK-dependent signaling in LTA-stimulated microglia. The findings indicate that RGE could be used for the treatment of neuroinflammation induced by grampositive bacteria and that it may have therapeutic potential for various neuroinflammation-associated disorders.

Hydroquinone, a Reactive Metabolite of Benzene, Reduces Macrophage-mediated Immune Responses

  • Lee, Ji Yeon;Kim, Joo Young;Lee, Yong Gyu;Shin, Won Cheol;Chun, Taehoon;Rhee, Man Hee;Cho, Jae Youl
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.198-206
    • /
    • 2007
  • Hydroquinone is a toxic compound and a major benzene metabolite. We report that it strongly inhibits the activation of macrophages and associated cells. Thus, it suppressed the production of proinflammatory cytokines [tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$, IL-3, IL-6, IL-10, IL-12p40, IL-23], secretion of toxic molecules [nitric oxide (NO) and reactive oxygen species (ROS)] and the activation and expression of CD29 as judged by cell-cell adhesion and surface staining experiments. The inhibition was due to the induction of heme oxygenase (HO)-1 in LPS-activated macrophages, since blocking HO-1 activity with ZnPP, an HO-1 specific inhibitor, abolished hydroquinone's NO inhibitory activity. In addition, hydroquinone and inhibitors (wortmannin and LY294002) of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway had very similar inhibitory effects on LPS-induced and CD29-mediated macrophage responses, including the phoshorylation of Akt. Therefore, our data suggest that hydroquinone inhibits macrophage-mediated immune responses by modulating intracellular signaling and protective mechanisms.

Fortified Antioxidative Potential by Chrysoeriol through the Regulation of the Nrf2/MAPK-mediated HO-1 Signaling Pathway in RAW 264.7 Cells (생쥐 대식세포에서 HO-1 발현 유도를 통한 chrysoeriol의 항산화 효과)

  • Park, Chung Mu
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • Chrysoeriol is a widespread flavone, and it is usually found in alfalfa, which has been used as a traditional medicine to treat dyspepsia, asthma, and urinary system disorders. Recently, analysis has been conducted on the anti-inflammatory activity of chrysoeriol, but information on its antioxidative capacity is limited. In this study, the antioxidative potential of chrysoeriol against oxidative damage and its molecular mechanisms were evaluated by analysis of the cell viability, reactive oxygen species (ROS) formation, and Western blots in the RAW 264.7 cell line. Chrysoeriol significantly scavenged lipopolysaccharide (LPS)-induced intracellular ROS formation in a dose-dependent manner, without any cytotoxicity. Heme oxygenase-1 (HO-1), a phase II enzyme that exerts antioxidative activity, was also potently induced by chrysoeriol treatment, which corresponded to the translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) into the nucleus. Moreover, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) were analyzed due to their important role in maintaining cellular redox homeostasis against oxidative stress. As a result, chrysoeriol-induced HO-1 upregulation was mediated by extracellular signal - regulated kinase (ERK), c-Jun $NH_2$-terminal kinase (JNK), and p38 phosphorylation. To identify the antioxidative potential exerted by HO-1, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was applied and mitigated by chrysoeriol treatment, which was confirmed by the HO-1 selective inhibitor and inducer, respectively. Consequently, chrysoeriol strongly strengthened the HO-1-mediated antioxidative potential through the regulation of the Nrf2/MAPK signaling pathways.