Anti-inflammatory Effect of the Cirsium japonicum var. ussuriense 70% Ethanolic Extract in RAW264.7 Cells by Heme oxygenase-1 Expression

엉겅퀴 70% 에탄올 추출물의 RAW264.7 세포에서 Heme oxygenase-1 발현을 통한 항염증 효과

  • Lee, Dong-Sung (Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University) ;
  • Kim, Kyoung-Su (Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University) ;
  • Li, Bin (Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University) ;
  • Choi, Hyun-Gyu (Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University) ;
  • Keo, Samell (Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University) ;
  • Jun, Ki-Young (Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University) ;
  • Park, Jun-Hyeong (Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University) ;
  • Kim, Youn-Chul (Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University)
  • Received : 2012.01.27
  • Accepted : 2012.03.09
  • Published : 2012.03.31

Abstract

Cirsium japonicum var. ussuriense has long been used in herbal medicine for the treatment of arthritis, dyspepsia, and bleeding in Korea. In the present study, we investigated anti-inflammatory effects of C. japonicum var. ussuriense against lipopolysaccharide(LPS)-induced activation in RAW264.7 cells by the expression of heme oxygenase (HO)-1. The 70% EtOH extract of the aerial parts of C. japonicum var. ussuriense (CJE), showed the potent anti-inflammatory effects on LPS-induced inflammation in RAW264.7 cells. The anti-inflammatory effect of CJE was demonstrated by the suppression of pro-inflammatory mediators, including pro-inflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2). Furthermore CJE induced HO-1 expression through nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and increased HO activity in RAW264.7 macrophages. The effects of CJE on LPS-induced NO and $PGE_2$ productions were partially reversed by an HO-1 inhibitor, tin protoporphyrin (SnPP). Therefore, it is suggested that CJE-induced HO-1 expression plays a role of the resulting anti-inflammatory effects in macrophages. These results suggest that CJE may be a promising candidate for the treatment of inflammatory diseases.

Keywords

References

  1. 생약학교재편찬위원회 (2007) 생약학, 439-440. 동명사, 서울
  2. 한국 약용식물학 연구회 (2001) 종합약용식물학, 297. 학창사, 서울.
  3. Lim, S. S. and Lee, J. H. (1997) Effect of Artemisia princeps var. orientalis and Circium japonicum var. ussuriense on cardiovascular system of hyperlipidemic rat. Korean J. Nutr. 30: 12-18.
  4. Lim, S. S., Kim, M. H. and Lee, J. H. (1997) Effect of Artemisia princeps var. orientalis and Circium japonicum var. ussuriense on liver function, body lipid, and bile acid of hyperlipidemic rat. Korean J. Nutr. 30: 797-802.
  5. Lee, M. K., Moon, H. C., Lee, J. H., Kim, J. D., Yu, C. Y. and Lee, H. Y. (2002) Screening of immune enhancing activities in medicinal herbs, Compositae. Korean J. Med. Crop Sci. 10: 51-57.
  6. Lee, H. K., Kim, J. S., Kim, N. Y., Kim, M. J., Park, S. U. and Yu, C. Y. (2003) Antioxidant, antimutagenicity, and anticancer activities of extracts from Cirsium japonicum var. ussuriense Kitamura. Korean J. Med. Crop Sci. 11: 53-61.
  7. Park, J. C., Hur, J. M., Park, J. G., Kim, S. C., Park, J. R., Choi, S. H. and Choi, J. W. (2004) Effects of methanol extract of Cirsium japonicum var. ussuriense and its principle, hispidulin-7-O-neohesperidoside on hepatic alcoholmetabolizing enzymes and lipid peroxidation in ethanoltreated rats. Phytother. Res. 18: 19-24. https://doi.org/10.1002/ptr.1299
  8. Liu, S., Luo, X., Li, D., Zhang, J., Qiu, D., Liu, W., She, L. and Yang, Z. (2006) Tumor inhibition and improved immunity in mice treated with flavone from Cirsium japonicum DC. Int. Immunopharmacol. 6: 1387-1393. https://doi.org/10.1016/j.intimp.2006.02.002
  9. Shida, H., Umino, T., Tsuji, K. and Kosuge, T. (1987) Studies on antihemorrhagic substances in herbs classified as hemostatics in Chinese medicine. VII. On the antihemorrhagic principle in Cirsium japonicum DC. Chem. Pharm. Bull. 35: 861-864. https://doi.org/10.1248/cpb.35.861
  10. Chan, E. C., Pannangpetch, P. and Woodman, O. L. (2000) Relaxation to flavones and flavonols in rat isolated thoracic aorta: mechanism of action and structure-activity relationships. J. Cardiovasc. Pharmacol. 35: 326-333. https://doi.org/10.1097/00005344-200002000-00023
  11. Xu, Y .C., Yeung, D. K. Y., Man, R. Y. K. and Leung, S. W. S. (2006) Kaempferol enhances endothelium-independent and dependent relaxation in the porcine coronary artery. Mol. Cell. Biochem. 287: 61-67. https://doi.org/10.1007/s11010-005-9061-y
  12. McVean, M., Weinberg, W. C. and Pelling, J. C. (2002) A p21(waf1)-independent pathway for inhibitory phosphorylation of cyclin-dependent kinase p34(cdc2) and concomitant G(2)/M arrest by the chemopreventive flavonoid apigenin. Mol Carcinog. 33: 36-43. https://doi.org/10.1002/mc.10016
  13. Wang, I. K., Lin-Shiau, S. Y. and Lin, J. K. (1999) Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur. J. Cancer. 35: 1517-1525. https://doi.org/10.1016/S0959-8049(99)00168-9
  14. Vargo, M. A., Voss, O. H., Poustka, F., Cardounel, A. J., Grotewold, E. and Doseff, A. I. (2006) Apigenin-inducedapoptosis is mediated by the activation of PKC and caspases in leukemia cells. Biochem. Pharmacol. 72: 681-692. https://doi.org/10.1016/j.bcp.2006.06.010
  15. Fotsis, T., Pepper, M. S., Aktas, E., Breit, S., Rasku, S., Adlercreutz, H., Wahala, K., Montesano, R. and Schweigerer, L. (1997) Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res. 57: 2916-2921.
  16. Yin, F., Giuliano, A. E., Law, R. E. and Van Herle, A. J. (2001) Apigenin inhibits growth and induces G2/M arrest by modulating cyclin-CDK regulators and ERK MAP kinase activation in breast carcinoma cells. Anticancer Res. 21: 413-420.
  17. Chen, D., Daniel, K. G., Chen, M. S., Kuhn, D. J., Landis- Piwowar, K. R. and Dou, Q. P. (2005) Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem. Pharmacol. 69: 1421-1432. https://doi.org/10.1016/j.bcp.2005.02.022
  18. Willoughby, D. A. (1975) Human arthritis applied to animal models. Towards a better therapy. Ann. Rheum. Dis. 34: 471-478. https://doi.org/10.1136/ard.34.6.471
  19. Posadas, I., Terencio, M. C., Guillén, I., Ferrándiz, M. L., Coloma, J., Payá, M. and Alcaraz, M. J. (2000) Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunyn Schmiedebergs Arch. Pharmacol. 361: 98-106. https://doi.org/10.1007/s002109900150
  20. Berlet, B. S. and Stadtman, E. R. (1997) Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272: 20313-20316. https://doi.org/10.1074/jbc.272.33.20313
  21. Palmer, R. M., Ashton, D. S. and Moncada, S. (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 333: 664-666. https://doi.org/10.1038/333664a0
  22. Liao, C. H., Sang, S., Liang, Y. C., Ho, C. T. and Lin, J. K. (2004) Suppression of inducible nitric oxide synthase and cyclooxygenase-2 in downregulating nuclear factor-kappa B pathway by Garcinol. Mol. Carcinog. 41: 140-149. https://doi.org/10.1002/mc.20050
  23. Salvemini, D., Manning, P. T., Zweifel, B. S., Seibert, K., Connor, J., Currie, M. G., Needleman, P. and Masferrer, J. L. (1995) Dual inhibition of nitric oxide and prostaglandin production contributes to the antiinflammatory properties of nitric oxide synthase inhibitors. J. Clin. Invest. 96: 301-308. https://doi.org/10.1172/JCI118035
  24. Lee, M. S., Lee, J., Kwon, D. Y. and Kim, M. S. (2006) Ondamtanggamibang protects neurons from oxidative stress with induction of heme oxygenase-1. J. Ethnopharmacol. 108: 294-298. https://doi.org/10.1016/j.jep.2006.05.012
  25. Choi, B. M., Kim, H. J., Oh, G. S., Pae, H. O., Oh, H., Jeong, S., Kwon, T. O., Kim, Y. M. and Chung, H. T. (2002) 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose protects rat neuronal cells (Neuro 2A) from hydrogen peroxide-mediated cell death via the induction of heme oxygenase-1. Neurosci. Lett. 328: 185-189. https://doi.org/10.1016/S0304-3940(02)00513-X
  26. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J. Immunol. Methods. 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  27. Tenhunen, R., Marver, H. S. and Schmid, R. (1970) The enzymatic catabolism of hemoglobin: stimulation of microsomal heme oxygenase by hemin. J. Lab. Clin. Med. 75: 410-421.
  28. Knowles, R. G. and Moncada, S. (1994) Nitric oxide synthases in mammals. Biochem. J. 298: 249-258.
  29. Balkwill, F. and Mantovani, A. (2001) Inflammation and cancer: back to Virchow? Lancet. 357: 537-545. https://doi.org/10.1016/S0140-6736(05)71691-3
  30. Balogun, E., Hoque, M., Gong, P., Killeen, E., Green, C. J., Foresti, R., Alam, J. and Motterlini, R. (2003) Curcumin activates the heme oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J. 371: 887-895. https://doi.org/10.1042/BJ20021619
  31. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M. and Nabeshima, Y. (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236: 313-322. https://doi.org/10.1006/bbrc.1997.6943