• Title/Summary/Keyword: hematopoietic stem cells

Search Result 163, Processing Time 0.037 seconds

Suspension culture system을 이용한 hematopoietic stem cell의 expansion

  • Gwon, Jun;Kim, Mi-Jeong;Kim, Byeong-Su;Park, Hong-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.475-478
    • /
    • 2001
  • Ex vivo hematopoietic cells can treat patients suffering from hematopoietic malignancies using bone marrow transplantation therapies. A initial cell density of $1.5{\times}10^6cells/ml$ and a growth factors of IL-3(5ng/ml), SCF(5ng/ml) and FL(25ng/ml) result in a 3.6-fold expansion of LTC- IC but a unexpansion of total cells.

  • PDF

RUNX1 Dosage in Development and Cancer

  • Lie-a-ling, Michael;Mevel, Renaud;Patel, Rahima;Blyth, Karen;Baena, Esther;Kouskoff, Valerie;Lacaud, Georges
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.126-138
    • /
    • 2020
  • The transcription factor RUNX1 first came to prominence due to its involvement in the t(8;21) translocation in acute myeloid leukemia (AML). Since this discovery, RUNX1 has been shown to play important roles not only in leukemia but also in the ontogeny of the normal hematopoietic system. Although it is currently still challenging to fully assess the different parameters regulating RUNX1 dosage, it has become clear that the dose of RUNX1 can greatly affect both leukemia and normal hematopoietic development. It is also becoming evident that varying levels of RUNX1 expression can be used as markers of tumor progression not only in the hematopoietic system, but also in non-hematopoietic cancers. Here, we provide an overview of the current knowledge of the effects of RUNX1 dosage in normal development of both hematopoietic and epithelial tissues and their associated cancers.

Nonmyeloablative Stem Cell Transplantation (비골수제거성 조혈모세포이식)

  • Hyun, Myung-Soo
    • Journal of Yeungnam Medical Science
    • /
    • v.19 no.1
    • /
    • pp.11-27
    • /
    • 2002
  • Allogenic hematopoietic stem cell transplantation is one of the effective therapy for several hematologic malignancies. Transplantation preparative regimen is designed to eradicate the patient's underlying disease and immunosuppress the patient adequately to prevent rejection of donor's hematopoietic stem cells. So, conventional myeloablative preparative regimens with high-dose chemotherapy or radiotherapy are related to high rate of morbidity and mortality. However, It has become clear that the high-dose therapy dose not eradicate the malignancy in some patients, and that the therapeutic benefit of allogenic transplantation is largely related to graft-versus-leukemia/graft-versus-tumor (GVL/GVT) effect. An new approach is to utilize less toxic, nonmyeloablative preparative regimens to achieve engraftment and allow GVL/GVT effects to develop. This strategy reduces the risk of treatment-related mortality and allows transplantation for elderly and those with comorbidities that preclude high-dose chemoradiotherapy.

  • PDF

Hematopoietic effect of deer antler extract fermented by Bacillus subtilis on murine marrow cells

  • Park, Yooheon;Choi, Hyeon-Son;Lee, Hyun-Sun;Suh, Hyung Joo
    • Nutrition Research and Practice
    • /
    • v.9 no.5
    • /
    • pp.451-458
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: We examined the chemical composition and the effect of fermented deer antler on hematopoietic factors in bone marrow cells. MATERIALS/METHODS: For the preparation of fermented deer antler extract (FAB), fermentation was carried out using Bacillus subtilis at $30^{\circ}C$ for 7 days. The hematopoietic effect of FAB was investigated hematopoietic factors in marrow cells. RESULTS: The contents of total sugar, sulfated glycosaminoglycans, and uronic acid and the dry weight gradually increased with fermentation time. The sialic acid content (from 0.14 mg/mL to 0.54 mg/mL) was the highest on the 4th day of fermentation after which it decreased. The proliferating activity of bone marrow cells increased with fermentation times. The levels of various hematopoietic growth factors were determined to verify the beneficial effect of deer antler extract fermented by B. subtilis on hematopoiesis. FAB increased the number of stem cell factors and granulocyte colony-stimulating factor in bone marrow cells. In addition, FAB augmented the burst-forming unit erythroid and total colonies in splenocyte-conditioned medium compared with non-fermented antler extract (NFA). However, FAB did not affect the mRNA levels of erythropoietin, an important factor for erythropoiesis. CONCLUSIONS: FAB, like NFA, did not directly affect hematopoiesis, but contributed to hematopoiesis by stimulating the production of hematopoietic factors.

Engineered adult stem cells: a promising tool for anti-cancer therapy

  • Youngdong Choi;Hong Kyu Lee;Kyung-Chul Choi
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.71-77
    • /
    • 2023
  • Cancers are one of the most dreaded diseases in human history and have been targeted by numerous trials including surgery, chemotherapy, radiation therapy, and anti-cancer drugs. Adult stem cells (ASCs), which can regenerate tissues and repair damage, have emerged as leading therapeutic candidates due to their homing ability toward tumor foci. Stem cells can precisely target malicious tumors, thereby minimizing the toxicity of normal cells and unfavorable side effects. ASCs, such as mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs), are powerful tools for delivering therapeutic agents to various primary and metastatic cancers. Engineered ASCs act as a bridge between the tumor sites and tumoricidal reagents, producing therapeutic substances such as exosomes, viruses, and anti-cancer proteins encoded by several suicide genes. This review focuses on various anti-cancer therapies implemented via ASCs and summarizes the recent treatment progress and shortcomings.

Neuropeptide Y-based recombinant peptides ameliorate bone loss in mice by regulating hematopoietic stem/progenitor cell mobilization

  • Park, Min Hee;Kim, Namoh;Jin, Hee Kyung;Bae, Jae-sung
    • BMB Reports
    • /
    • v.50 no.3
    • /
    • pp.138-143
    • /
    • 2017
  • Ovariectomy-induced bone loss is related to an increased deposition of osteoclasts on bone surfaces. We reported that the 36-amino-acid-long neuropeptide Y (NPY) could mobilize hematopoietic stem/progenitor cells (HSPCs) from the bone marrow to the peripheral blood by regulating HSPC maintenance factors and that mobilization of HSPCs ameliorated low bone density in an ovariectomy-induced osteoporosis mouse model by reducing the number of osteoclasts. Here, we demonstrated that new NPY peptides, recombined from the cleavage of the full-length NPY, showed better functionality for HSPC mobilization than the full-length peptide. These recombinant peptides mediated HSPC mobilization with greater efficiency by decreasing HSPC maintenance factors. Furthermore, treatment with these peptides reduced the number of osteoclasts and relieved ovariectomy-induced bone loss in mice more effectively than treatment with full-length NPY. Therefore, these results suggest that peptides recombined from full-length NPY can be used to treat osteoporosis.

AMD3100 improves ovariectomy-induced osteoporosis in mice by facilitating mobilization of hematopoietic stem/progenitor cells

  • Im, Jin Young;Min, Woo-Kie;Park, Min Hee;Kim, NamOh;Lee, Jong Kil;Jin, Hee Kyung;Choi, Je-Yong;Kim, Shin-Yoon;Bae, Jae-Sung
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.439-444
    • /
    • 2014
  • Inhibition of an increase of osteoclasts has become the most important treatment for osteoporosis. The CXCR4 antagonist, AMD3100, plays an important role in the mobilization of osteoclast precursors within bone marrow (BM). However, the actual therapeutic impact of AMD3100 in osteoporosis has not yet been ascertained. Here we demonstrate the therapeutic effect of AMD3100 in the treatment of ovariectomy-induced osteoporosis in mice. We found that treatment with AMD3100 resulted in direct induction of release of SDF-1 from BM to blood and mobilization of hematopoietic stem/progenitor cells (HSPCs) in an osteoporosis model. AMD3100 prevented bone density loss after ovariectomy by mobilization of HSPCs, suggesting a therapeutic strategy to reduce the number of osteoclasts on bone surfaces. These findings support the hypothesis that treatment with AMD3100 can result in efficient mobilization of HSPCs into blood through direct blockade of the SDF-1/CXCR4 interaction in BM and can be considered as a potential new therapeutic intervention for osteoporosis.

Factors to Predict Successful Harvest during Autologous Peripheral Hematopoietic Stem Cell Collection

  • Kim, Mun-Ja;Jin, Soo-He;Lee, Duk-Hee;Park, Dae-Weon;Koh, Sung-Ae;Lee, Kyung-Hee;Hyun, Myung-Soo;Kim, Min-Kyoung
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.131-138
    • /
    • 2012
  • Autologous peripheral blood stem cell transplantation (PBSCT) has been used as a major treatment strategy for hematological malignancies. The number of CD34 positive cells in the harvested product is a very important factor for achieving successful transplantation. We studied the factors that can predict the number of CD34 positive cells in the harvested product of acute myelocytic leukemia (AML), multiple myeloma (MM) and Non-Hodgkin's lymphoma (NHL) patients after mobilizing them with chemotherapy plus G-CSF. A total of 73 patients (AML 19 patients, MM 28 patients, NHL 26 patients) with hematological malignancies had been mobilized with chemotherapy and granulocyte colony-stimulating growth factor from April, 2000 to February, 2012. Group's characteristics, checkup opinion of pre-peripheral blood on the day of harvest & outcome of PBSC were analyzed and evaluated using SPSS statistics program after grouping patients as below; group 1: CD34 cell counts < $2{\times}10^6/kg$ (n=16); group 2: $2{\times}10^6/kg{\leq}CD34$ cell counts < $6{\times}10^6/kg$ (n=32); group 3: CD34 cell counts ${\geq}6{\times}10^6/kg$ (n=25). We analyzed the clinical characteristics, the peripheral blood (PB) parameters and the number of CD34 positive cells in the PB and their correlation with the yield of CD34 positive cells collected from the mobilized patients. The total number of leukapheresis sessions was 263 (mean: 3.55 session per patient), and the mean number of harvested CD34 positive cells per patient was $7.37{\times}10^6/kg$. The number of CD34 positive cells in product was significantly correlated with the number of platelet and CD34 positive cells in peripheral blood (P<0.05). The number of PB CD34 positive cells was the best significant factor for the quantity of harvested CD34 positive cells on the linear regression analysis (P<0.05). Many factors could influence the mobilization of peripheral blood stem cells. Platelet count and PB CD34 positive cells count were the two variables which remained to be significant in multivariate analysis. Therefore, the number of platelet and CD34 positive cells in peripheral blood on the day of harvest can be used as an accurate predictor for successful peripheral blood stem cell collection.

Role of neuropeptide Y in the bone marrow hematopoietic stem cell microenvironment

  • Park, Min Hee;Min, Woo-Kie;Jin, Hee Kyung;Bae, Jae-sung
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.645-646
    • /
    • 2015
  • The sympathetic nervous system (SNS) or neurotransmitters in the bone marrow microenvironment has been known to regulate hematopoietic stem cell (HSC) functions such as self-renewal, proliferation and differentiation. However, the specific role of neuropeptide Y (NPY) in this process remains relatively unexplored. In this study, we demonstrated that NPY deficient mice have significantly reduced HSC numbers and impaired bone marrow regeneration due to apoptotic destruction of SNS fibers and/or endothelial cells. Moreover, NPY treatment prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while conditional knockout mice lacking the Y1 receptor in macrophages did not restore bone marrow dysfunction in spite of NPY injection. Transforming growth factor-beta (TGF-β) secreted by NPY-mediated Y1 receptor stimulation in macrophages plays a key role in neuroprotection and HSC survival in the bone marrow. Therefore, this study reveals a new role of NPY in bone marrow HSC microenvironment, and provides an insight into the therapeutic application of this neuropeptide.