DOI QR코드

DOI QR Code

Engineered adult stem cells: a promising tool for anti-cancer therapy

  • Youngdong Choi (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Hong Kyu Lee (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Kyung-Chul Choi (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
  • Received : 2022.05.28
  • Accepted : 2022.11.04
  • Published : 2023.02.28

Abstract

Cancers are one of the most dreaded diseases in human history and have been targeted by numerous trials including surgery, chemotherapy, radiation therapy, and anti-cancer drugs. Adult stem cells (ASCs), which can regenerate tissues and repair damage, have emerged as leading therapeutic candidates due to their homing ability toward tumor foci. Stem cells can precisely target malicious tumors, thereby minimizing the toxicity of normal cells and unfavorable side effects. ASCs, such as mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs), are powerful tools for delivering therapeutic agents to various primary and metastatic cancers. Engineered ASCs act as a bridge between the tumor sites and tumoricidal reagents, producing therapeutic substances such as exosomes, viruses, and anti-cancer proteins encoded by several suicide genes. This review focuses on various anti-cancer therapies implemented via ASCs and summarizes the recent treatment progress and shortcomings.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program (2020R1A2C2006060) and the Global Research and Development Center (GRDC) Program (2017K1A4A3014959) through the National Research Foundation (NRF) of Korea, funded by the Ministry of Science and ICT. In addition, this work was also supported by the Basic Research Lab Program (2022R1A4A1025557) through the National Research Foundation (NRF) of Korea, funded by the Ministry of Science and ICT.

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71, 209-249 https://doi.org/10.3322/caac.21660
  2. Nurgali K, Jagoe RT and Abalo R (2018) Editorial: adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front Pharmacol 9, 245
  3. Kayiran O, De La Cruz C, Tane K and Soran A (2017) Lymphedema: from diagnosis to treatment. Turk J Surg 33, 51-57 https://doi.org/10.5152/turkjsurg.2017.3870
  4. Harrold J, Gisleskog PO, Delor I et al (2020) Quantification of radiation injury on neutropenia and the link between absolute neutrophil count time course and overall survival in nonhuman primates treated with G-CSF. Pharm Res 37, 102
  5. Gurusamy N, Alsayari A, Rajasingh S and Rajasingh J (2018) Adult stem cells for regenerative therapy. Prog Mol Biol Transl Sci 160, 1-22 https://doi.org/10.1016/bs.pmbts.2018.07.009
  6. Gage FH (2000) Mammalian neural stem cells. Science 287, 1433-1438 https://doi.org/10.1126/science.287.5457.1433
  7. Aboody KS, Brown A, Rainov NG et al (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A 97, 12846-12851 https://doi.org/10.1073/pnas.97.23.12846
  8. Erlandsson A, Larsson J and Forsberg-Nilsson K (2004) Stem cell factor is a chemoattractant and a survival factor for CNS stem cells. Exp Cell Res 301, 201-210 https://doi.org/10.1016/j.yexcr.2004.08.009
  9. Widera D, Holtkamp W, Entschladen F et al (2004) MCP-1 induces migration of adult neural stem cells. Eur J Cell Biol 83, 381-387 https://doi.org/10.1078/0171-9335-00403
  10. Imitola J, Raddassi K, Park KI et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101, 18117-18122 https://doi.org/10.1073/pnas.0408258102
  11. Sun L, Lee J and Fine HA (2004) Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. J Clin Invest 113, 1364-1374 https://doi.org/10.1172/JCI200420001
  12. Loebinger MR, Eddaoudi A, Davies D and Janes SM (2009) Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 69, 4134-4142 https://doi.org/10.1158/0008-5472.CAN-08-4698
  13. Kidd S, Spaeth E, Dembinski JL et al (2009) Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 27, 2614-2623 https://doi.org/10.1002/stem.187
  14. Frank RT, Edmiston M, Kendall SE et al (2009) Neural stem cells as a novel platform for tumor-specific delivery of therapeutic antibodies. PLoS One 4, e8314
  15. Rachakatla RS, Pyle MM, Ayuzawa R et al (2008) Combination treatment of human umbilical cord matrix stem cell-based interferon-beta gene therapy and 5-fluorouracil significantly reduces growth of metastatic human breast cancer in SCID mouse lungs. Cancer Invest 26, 662-670 https://doi.org/10.1080/07357900701871134
  16. Joo KM, Park IH, Shin JY et al (2009) Human neural stem cells can target and deliver therapeutic genes to breast cancer brain metastases. Mol Ther 17, 570-575 https://doi.org/10.1038/mt.2008.290
  17. Dachs GU, Tupper J and Tozer GM (2005) From bench to bedside for gene-directed enzyme prodrug therapy of cancer. Anticancer Drugs 16, 349-359 https://doi.org/10.1097/00001813-200504000-00001
  18. Longley DB, Harkin DP and Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3, 330-338
  19. Kilstrup M, Meng LM, Neuhard J and Nygaard P (1989) Genetic evidence for a repressor of synthesis of cytosine deaminase and purine biosynthesis enzymes in Escherichia coli. J Bacteriol 171, 2124-2127 https://doi.org/10.1128/jb.171.4.2124-2127.1989
  20. Kucerova L, Altanerova V, Matuskova M, Tyciakova S and Altaner C (2007) Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 67, 6304-6313 https://doi.org/10.1158/0008-5472.CAN-06-4024
  21. Gutova M, Flores L, Adhikarla V et al (2019) Quantitative evaluation of intraventricular delivery of therapeutic neural stem cells to orthotopic glioma. Front Oncol 9, 68
  22. Najbauer J, Huszthy PC, Barish ME et al (2012) Cellular host responses to gliomas. PLoS One 7, e35150
  23. Ao Q, Wang AJ, Chen GQ, Wang SJ, Zuo HC and Zhang XF (2007) Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries. Med Hypotheses 69, 1234-1237 https://doi.org/10.1016/j.mehy.2007.04.011
  24. Ko TP, Lin JJ, Hu CY, Hsu YH, Wang AH and Liaw SH (2003) Crystal structure of yeast cytosine deaminase. Insights into enzyme mechanism and evolution. J Biol Chem 278, 19111-19117
  25. Nouri FS, Wang X and Hatefi A (2015) Genetically engineered theranostic mesenchymal stem cells for the evaluation of the anticancer efficacy of enzyme/prodrug systems. J Control Release 200, 179-187 https://doi.org/10.1016/j.jconrel.2015.01.003
  26. Ho YK, Woo JY, Tu GXE, Deng LW and Too HP (2020) A highly efficient non-viral process for programming mesenchymal stem cells for gene directed enzyme prodrug cancer therapy. Sci Rep 10, 14257
  27. Amara I, Touati W, Beaune P and de Waziers I (2014) Mesenchymal stem cells as cellular vehicles for prodrug gene therapy against tumors. Biochimie 105, 4-11 https://doi.org/10.1016/j.biochi.2014.06.016
  28. Portnow J, Synold TW, Badie B et al (2017) Neural stem cell-based anticancer gene therapy: a first-in-human study in recurrent high-grade glioma patients. Clin Cancer Res 23, 2951-2960 https://doi.org/10.1158/1078-0432.CCR-16-1518
  29. Wierdl M, Morton CL, Weeks JK, Danks MK, Harris LC and Potter PM (2001) Sensitization of human tumor cells to CPT-11 via adenoviral-mediated delivery of a rabbit liver carboxylesterase. Cancer Res 61, 5078-5082
  30. Danks MK and Potter PM (2004) Enzyme-prodrug systems: carboxylesterase/CPT-11. Methods Mol Med 90, 247-262
  31. Bachoud-Levi AC, Remy P, Nguyen JP et al (2000) Motor and cognitive improvements in patients with Huntington's disease after neural transplantation. Lancet 356, 1975-1979 https://doi.org/10.1016/S0140-6736(00)03310-9
  32. DuBois SG, Marachelian A, Fox E et al (2016) Phase i study of the aurora a kinase inhibitor alisertib in combination with irinotecan and temozolomide for patients with relapsed or refractory neuroblastoma: a nant (new approaches to neuroblastoma therapy) trial. J Clin Oncol 34, 1368-1375 https://doi.org/10.1200/JCO.2015.65.4889
  33. Wierdl M, Tsurkan L, Hyatt JL et al (2008) An improved human carboxylesterase for enzyme/prodrug therapy with CPT-11. Cancer Gene Ther 15, 183-192 https://doi.org/10.1038/sj.cgt.7701112
  34. Metz MZ, Gutova M, Lacey SF et al (2013) Neural stem cell-mediated delivery of irinotecan-activating carboxylesterases to glioma: implications for clinical use. Stem Cells Transl Med 2, 983-992 https://doi.org/10.5966/sctm.2012-0177
  35. Miller WH and Miller RL (1980) Phosphorylation of acyclovir (acycloguanosine) monophosphate by GMP kinase. J Biol Chem 255, 7204-7207 https://doi.org/10.1016/S0021-9258(20)79686-9
  36. Bhaumik S (2011) Advances in imaging gene-directed enzyme prodrug therapy. Curr Pharm Biotechnol 12, 497-507 https://doi.org/10.2174/138920111795163896
  37. Wang C, Natsume A, Lee HJ et al (2012) Neural stem cell-based dual suicide gene delivery for metastatic brain tumors. Cancer Gene Ther 19, 796-801 https://doi.org/10.1038/cgt.2012.63
  38. Davola ME and Mossman KL (2019) Oncolytic viruses: how "lytic" must they be for therapeutic efficacy? Oncoimmunology 8, e1581528
  39. Lemos de Matos A, Franco LS and McFadden G (2020) Oncolytic viruses and the immune system: the dynamic duo. Mol Ther Methods Clin Dev 17, 349-358 https://doi.org/10.1016/j.omtm.2020.01.001
  40. Sage EK, Thakrar RM and Janes SM (2016) Genetically modified mesenchymal stromal cells in cancer therapy. Cytotherapy 18, 1435-1445 https://doi.org/10.1016/j.jcyt.2016.09.003
  41. Ebrahimi S, Ghorbani E, Khazaei M et al (2017) Interferonmediated tumor resistance to oncolytic virotherapy. J Cell Biochem 118, 1994-1999
  42. Salmasi Z, Hashemi M, Mahdipour E, Nourani H, Abnous K and Ramezani M (2020) Mesenchymal stem cells engineered by modified polyethylenimine polymer for targeted cancer gene therapy, in vitro and in vivo. Biotechnol Prog 36, e3025
  43. Gao F, Chiu SM, Motan DA et al (2016) Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 7, e2062
  44. Wang X, Zhao X and He Z (2021) Mesenchymal stem cell carriers enhance anti-tumor efficacy of oncolytic virotherapy. Oncol Lett 21, 238
  45. Yoon AR, Hong J, Li Y et al (2019) Mesenchymal stem cell-mediated delivery of an oncolytic adenovirus enhances antitumor efficacy in hepatocellular carcinoma. Cancer Res 79, 4503-4514 https://doi.org/10.1158/0008-5472.CAN-18-3900
  46. Hammad M, Cornejo YR, Batalla-Covello J et al (2020) Neural stem cells improve the delivery of oncolytic chimeric orthopoxvirus in a metastatic ovarian cancer model. Mol Ther Oncolytics 18, 326-334 https://doi.org/10.1016/j.omto.2020.07.002
  47. Morshed RA, Gutova M, Juliano J et al (2015) Analysis of glioblastoma tumor coverage by oncolytic virus-loaded neural stem cells using MRI-based tracking and histological reconstruction. Cancer Gene Ther 22, 55-61 https://doi.org/10.1038/cgt.2014.72
  48. Yanez-Mo M, Siljander PR, Andreu Z et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4, 27066
  49. Kalluri R and LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367, eaau6977
  50. Ha D, Yang N and Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6, 287-296 https://doi.org/10.1016/j.apsb.2016.02.001
  51. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S and Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29, 341-345 https://doi.org/10.1038/nbt.1807
  52. Hong D, Kurzrock R, Kim Y et al (2015) AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med 7, 314ra185
  53. Huynh J, Chand A, Gough D and Ernst M (2019) Therapeutically exploiting STAT3 activity in cancer - using tissue repair as a road map. Nat Rev Cancer 19, 82-96 https://doi.org/10.1038/s41568-018-0090-8
  54. Moreira D, Adamus T, Zhao X et al (2018) STAT3 inhibition combined with CpG immunostimulation activates antitumor immunity to eradicate genetically distinct castration-resistant prostate cancers. Clin Cancer Res 24, 5948-5962 https://doi.org/10.1158/1078-0432.CCR-18-1277
  55. Altanerova U, Jakubechova J, Benejova K et al (2019) Prodrug suicide gene therapy for cancer targeted intracellular by mesenchymal stem cell exosomes. Int J Cancer 144, 897-908 https://doi.org/10.1002/ijc.31792
  56. Yuan L, Liu Y, Qu Y, Liu L and Li H (2019) Exosomes derived from MicroRNA-148b-3p-overexpressing human umbilical cord mesenchymal stem cells restrain breast cancer progression. Front Oncol 9, 1076
  57. Berraondo P, Sanmamed MF, Ochoa MC et al (2019) Cytokines in clinical cancer immunotherapy. Br J Cancer 120, 6-15 https://doi.org/10.1038/s41416-018-0328-y
  58. Palmer PA, Vinke J, Evers P et al (1992) Continuous infusion of recombinant interleukin-2 with or without autologous lymphokine activated killer cells for the treatment of advanced renal cell carcinoma. Eur J Cancer 28A, 1038-1044 https://doi.org/10.1016/0959-8049(92)90450-G
  59. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ and Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62, 3603-3608
  60. Chulpanova DS, Kitaeva KV, Green AR, Rizvanov AA and Solovyeva VV (2020) Molecular aspects and future perspectives of cytokine-based anti-cancer immunotherapy. Front Cell Dev Biol 8, 402
  61. Chen X, Lin X, Zhao J et al (2008) A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol Ther 16, 749-756 https://doi.org/10.1038/mt.2008.3
  62. Pan G, O'Rourke K, Chinnaiyan AM et al (1997) The receptor for the cytotoxic ligand TRAIL. Science 276, 111-113 https://doi.org/10.1126/science.276.5309.111
  63. Gao Z, Zhang L, Hu J and Sun Y (2013) Mesenchymal stem cells: a potential targeted-delivery vehicle for anticancer drug, loaded nanoparticles. Nanomedicine 9, 174-184 https://doi.org/10.1016/j.nano.2012.06.003
  64. Park JS, Na K, Woo DG et al (2010) Non-viral gene delivery of DNA polyplexed with nanoparticles transfected into human mesenchymal stem cells. Biomaterials 31, 124-132 https://doi.org/10.1016/j.biomaterials.2009.09.023
  65. von Maltzahn G, Park JH, Agrawal A et al (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69, 3892-3900 https://doi.org/10.1158/0008-5472.CAN-08-4242
  66. Hirsch LR, Stafford RJ, Bankson JA et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100, 13549-13554 https://doi.org/10.1073/pnas.2232479100
  67. Mooney R, Roma L, Zhao D et al (2014) Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy. ACS Nano 8, 12450-12460 https://doi.org/10.1021/nn505147w
  68. Li Z, Clemens DL, Lee BY, Dillon BJ, Horwitz MA and Zink JI (2015) Mesoporous silica nanoparticles with pHsensitive nanovalves for delivery of moxifloxacin provide improved treatment of lethal pneumonic tularemia. ACS Nano 9, 10778-10789
  69. Guisasola E, Baeza A, Talelli M et al (2015) Magneticresponsive release controlled by hot spot effect. Langmuir 31, 12777-12782 https://doi.org/10.1021/acs.langmuir.5b03470
  70. Paris JL, de la Torre P, Victoria Cabanas M et al (2017) Vectorization of ultrasound-responsive nanoparticles in placental mesenchymal stem cells for cancer therapy. Nanoscale 9, 5528-5537 https://doi.org/10.1039/C7NR01070B
  71. Hong M, Clubb JD and Chen YY (2020) Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell 38, 473-488 https://doi.org/10.1016/j.ccell.2020.07.005
  72. Liu X, Zhang Y, Cheng C et al (2017) CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res 27, 154-157 https://doi.org/10.1038/cr.2016.142
  73. Gschweng E, De Oliveira S and Kohn DB (2014) Hematopoietic stem cells for cancer immunotherapy. Immunol Rev 257, 237-249 https://doi.org/10.1111/imr.12128
  74. Giannoni F, Hardee CL, Wherley J et al (2013) Allelic exclusion and peripheral reconstitution by TCR transgenic T cells arising from transduced human hematopoietic stem/progenitor cells. Mol Ther 21, 1044-1054 https://doi.org/10.1038/mt.2013.8
  75. Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568-571 https://doi.org/10.1038/nature13954
  76. Hu Q, Sun W, Wang J et al (2018) Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nat Biomed Eng 2, 831-840 https://doi.org/10.1038/s41551-018-0310-2
  77. Liu X, Hu J, Li Y et al (2018) Mesenchymal stem cells expressing interleukin-18 inhibit breast cancer in a mouse model. Oncol Lett 15, 6265-6274 https://doi.org/10.3892/ol.2018.8166
  78. Lagasse E, Connors H, Al-Dhalimy M et al (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6, 1229-1234 https://doi.org/10.1038/81326
  79. Dachs GU, Hunt MA, Syddall S, Singleton DC and Patterson AV (2009) Bystander or no bystander for gene directed enzyme prodrug therapy. Molecules 14, 4517-4545 https://doi.org/10.3390/molecules14114517