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The transcription factor RUNX1 first came to prominence 
due to its involvement in the t(8;21) translocation in acute 
myeloid leukemia (AML). Since this discovery, RUNX1 has 
been shown to play important roles not only in leukemia but 
also in the ontogeny of the normal hematopoietic system. 
Although it is currently still challenging to fully assess the 
different parameters regulating RUNX1 dosage, it has 
become clear that the dose of RUNX1 can greatly affect both 
leukemia and normal hematopoietic development. It is also 
becoming evident that varying levels of RUNX1 expression 
can be used as markers of tumor progression not only in the 
hematopoietic system, but also in non-hematopoietic cancers. 
Here, we provide an overview of the current knowledge of 
the effects of RUNX1 dosage in normal development of both 
hematopoietic and epithelial tissues and their associated 
cancers.

Keywords: development, dosage, hematopoiesis, runx1, 

tumorigenesis

INTRODUCTION

RUNX1 is the founding member of the mammalian core- 

binding transcription factor family which also consists of 

RUNX2, RUNX3 and their non-DNA binding co-factor 

core-binding factor beta (CBFβ) (Ito et al., 2015; Mevel et al., 

2019). In humans, RUNX1 is localized on chromosome 21 

and was first identified by Miyoshi et al. (1991) as the acute 

myeloid leukemia gene 1 (AML1) due to its involvement in 

the t(8;21) translocation in acute myeloid leukemia (AML). 

Shortly after this discovery, the murine version of Runx1 was 

identified (Bae et al., 1993; Ogawa et al., 1993b; Wang et al., 

1993) which paved the way for the development of Runx1 

knockout mouse models. These models revealed that RUNX1 

plays a crucial role in the establishment of the hematopoietic 

system during embryogenesis (North et al., 1999; Okuda et 

al., 1996; Wang et al., 1996a). Both in ontogeny and disease, 

there are indications that the dose of wild-type (WT) RUNX1 

can have profound effects on cell survival and differentiation. 

Although arguably best studied in hematopoiesis and leu-

kemia, RUNX1 has also been found to play important roles 

in the development and tumorigenesis of epithelial tissues 

(Hong et al., 2019; Mevel et al., 2019; Taniuchi et al., 2012). 

Here, we aim to provide an overview of the current knowl-

edge of the effects of RUNX1 dosage, in mouse and human, 

during normal development and homeostasis of hematopoi-

etic and epithelial tissues as well as the known requirements 

for endogenous WT RUNX1 in cancers.

 Dosage reflects both the amount of protein as well as its 

activation status. Indeed, RUNX1 protein levels can be reg-

ulated by the rate of transcription, translation and stability. 



  Mol. Cells 2020; 43(2): 126-138  127

RUNX1 Dosage
Michael Lie-a-ling et al.

RUNX1 activity (either as activator or repressor) is also further 

modulated through protein conformation, intracellular local-

ization, post-translational modifications (PTMs) and interac-

tions with additional proteins. RUNX1 has many interacting 

partners and their availability depends on cell type, differen-

tiation status and cell cycle. Describing these interactors fully 

lies outside the scope of this brief review and has been cov-

ered in great details in excellent recent reviews (Chuang et al., 

2013; Goyama et al., 2015; Ito et al., 2015). In vertebrates, 

there is a high degree of homology between the different 

RUNX proteins both within and across species (Rennert et al., 

2003). However this high degree of inter-gene similarity does 

not necessarily mean that mechanisms of action and regu-

lation of RUNX1 can be extrapolated to other RUNX family 

members (Bruno et al., 2019). This review focuses specifically 

on what is known about RUNX1 in human and mouse.

RUNX1 PROTEIN LEVELS AND RUNX1 ACTIVITY

Two promoters control RUNX1 transcription, the P1 (distal) 

and the P2 (proximal) promoter, whose major generat-

ed transcripts are respectively the distal RUNX1c and the 

proximal RUNX1b isoforms (Ghozi et al., 1996; Miyoshi 

et al., 1995). The two promoters are differentially active 

depending on the cell context and developmental stage 

(Bee et al., 2009; Draper et al., 2016; Sroczynska et al., 

2009). P1 transcripts are longer than P2 transcripts due to 

the presence of a 150 kb intron suggesting that the former 

takes longer to produce (Levanon et al., 2001; Pozner et al., 

2000). Furthermore, both isoforms possess different 5' and 

3' untranslated regions containing motifs known to affect 

post-transcriptional events like RNA stability and the rate 

of translation initiation (Levanon et al., 2001; Levanon and 

Groner, 2004; Pozner et al., 2000). At the protein level, the 

two isoforms only differ in their most N-terminal amino acid 

sequence (Fig. 1A). The unique N-terminus of RUNX1b has 

been implicated in protein stability (Nieke et al., 2017), while 

the unique N-terminal sequence of RUNX1c has been shown 

to have higher binding capacity on certain genes (Telfer and 

Rothenberg, 2001). The common regions of both isoforms 

consist of a N-terminal region, which potentially plays a role 

in transcriptional activation (Liu et al., 2006), followed by the 

DNA binding Runt homology domain which also forms the 

interaction domain for the RUNX family co-factor CBFβ. CBFβ 

is the heterodimeric binding partner of all RUNX proteins 

(Nagata et al., 1999; Ogawa et al., 1993a; 1993b). CBFβ 

enhances RUNX DNA-binding affinity and protects it from 

degradation (Bravo et al., 2001; Huang et al., 2001; Tahirov 

et al., 2001; Yan et al., 2004). Interestingly, two different 

isoforms of CBFβ have been described which, at least in the 

case of RUNX2, have been shown to differentially affect DNA 

binding (Jiang et al., 2016). The C-terminal half of RUNX1 

harbors a transactivation domain, flanked by inhibitory re-

gions (Aronson et al., 1997; Kanno et al., 1998; Levanon et 

al., 1998). In primates there is a third commonly expressed 

RUNX1 isoform, RUNX1a, transcribed from the P2 promoter 

(Miyoshi et al., 1995). This isoform lacks most of the C-ter-

minus including the transactivation domain. In mice, it is 

thought that an exon 6 skipping variant of Runx1b is fulfilling 

a similar role (Komeno et al., 2014).

 Finally, RUNX1 activity and stability can be modulated by 

various PTMs including phosphorylation, methylation, acetyl-

ation, ubiquitination, sumoylation and prolyl isomerisation 

(Blumenthal et al., 2017; Goyama et al., 2015; Ito et al., 

2015). In Table 1, we have listed the residues in RUNX1 that 

have been shown to be the target of PTM and their effect on 

RUNX1. Few of these PTM have been extensively studied in 

vivo neither in development nor in cancer models. In general 

multiple residues have to be mutated to see clear phenotypes 

in vivo suggesting, perhaps not unexpectedly, that there is 

a high degree of redundancy and/or compensation in place 

(Goyama et al., 2004; Huang et al., 2012; Tachibana et al., 

2008; Yoshimi et al., 2012).

RUNX1 IN HEMATOPOIESIS AND LEUKEMIA

RUNX1 dosage in hematopoietic development 
In mammalian embryogenesis, the hematopoietic system is 

established via several consecutive waves of blood cell gener-

ation (Dzierzak and Bigas, 2018). In mice, the first wave gen-

erates primitive erythrocytes at embryonic day 7.25 (E7.25). 

It is followed by the emergence of erythroid myeloid progeni-

tors at E8.25, and lymphoid myeloid progenitors at E9.5. The 

final wave of hematopoiesis at E10.5 takes place in the aor-

ta-gonad-mesonephros (AGM) region of the embryo proper 

and generates the first hematopoietic stem cells (HSCs). The 

HSCs then migrate to the fetal liver (E12.5) where they mul-

tiply and mature before colonizing the bone marrow (E16.5). 

Except for the first wave, RUNX1 is absolutely required for 

blood cell formation (Chen et al., 2009; Lancrin et al., 2009; 

North et al., 1999; Okuda et al., 1996; Wang et al., 1996a; 

Yokomizo et al., 2008). At all sites of de-novo blood cell 

generation in the embryo, the hematopoietic cells have been 

found to arise from a specialized endothelium (hemogenic 

endothelium or HE), via a process termed the endotheli-

al-to-hematopoietic transition (EHT) (Boisset et al., 2010; 

Chen et al., 2009; Eilken et al., 2009; Lancrin et al., 2009; 

Ottersbach, 2019; Zovein et al., 2008). RUNX1 is required for 

EHT (Chen et al., 2009; Lancrin et al., 2009; Liakhovitskaia et 

al., 2009; Menegatti et al., 2019) and there are indications 

that RUNX1 dosage is important for the progression and tim-

ing of this process.

 Detailed studies using reporter mice and mouse embryonic 

stem cell lines (mESCs) demonstrated that the P2 promoter 

(Runx1b isoform) is activated first during ontogeny (Bee et 

al., 2009; Sroczynska et al., 2009). The mESCs system further 

revealed that the P2 promoter is active from the hemangio-

blasts (the mesodermal precursor to HE) stage onwards (Lie-

A-Ling et al., 2018; Sroczynska et al., 2009). Both in vivo and 

in the mESCs system, it is clear that the P2 promoter is dom-

inant in the HE, while afterwards, as the first hematopoietic 

stem and progenitor cells (HSPCs) emerge, the P1 promoter 

becomes active (Bee et al., 2009; Sroczynska et al., 2009). In 

vivo, upon migration of the HSPC to the fetal liver, P2 activity 

decreases and P1 becomes the dominant promoter (Bee et 

al., 2009; Sroczynska et al., 2009). Quantification of Runx1 

RNA levels in bulk sorted populations derived from mESCs 

suggest Runx1 expression is higher in hematopoietic progen-
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itors than in the preceding differentiation stages including 

HE (Goode et al., 2016; Lie-A-Ling et al., 2018). Similar ob-

servations have been made by single cell polymerase chain 

reaction analyses (Swiers et al., 2013) and RNA-seq (Baron 

et al., 2018) of cells isolated from mouse AGM, with the fre-

quency of Runx1 expressing cells increasing according to dif-

ferentiation stage. Despite potentially lower levels of Runx1 

expression in HE, immunofluorescence analyses of the AGM 
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Fig. 1. RUNX1 dosage in hematopoietic development. (A) Schematic representation of the two most abundant RUNX1 isoforms. Except 

for the most N-terminal sequence (RUNX1C N-terminal in green, RUNX1B N-terminal in red) the proteins are identical and they both 

contain the highly conserved Runt homology domain (RHD, blue) followed by a transactivation domain (TAD, orange) which is flanked 

by inhibitory regions. The C-terminal inhibitory region contains a highly conserved VWRPY motif (brown). (B) Immunofluorescence on 

the AGM of a E10.5 mouse embryo. The dorsal aortic endothelial cells are marked by the endothelial marker CD31 (yellow). The majority 

of the cells on the ventral side of the dorsal aorta (constituting both endothelial and rare HE cells) are positive for the RUNX1 protein 

(magenta). Scale bars = 20 µm. (C) Current model of RUNX1 dosage in hematopoietic development. Top: RUNX1 dosage requirement 

can be divided in three phases. Phase ①: early in differentiation RUNX1 is not required but its (low) dose influences the timing and 

dynamics of HE cells appearance. Phase ②: although RUNX1 levels are still low in HE cells, its presence is required for the initiation of the 

EHT. Phase ③: an increased dose of RUNX1 is required for the completion of EHT and the generation of the first mature hematopoietic 

cells. The whole differentiation process is predominantly controlled by the RUNX1b isoform. Bottom: schematic overview of the currently 

available phenotypic data on RUNX1 dosage during the establishment of the hematopoietic system in the embryo.
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in mice has demonstrated that the majority of the cells on the 

ventral side of the dorsal aorta (constituting both endothelial 

and rare HE cells) are positive for the presence of the RUNX1 

protein (Fig. 1B) (North et al., 1999).

 In human, the picture is less clear. Early publications in-

dicate that during human ESCs (hESCs) differentiation the 

expression of RUNX1 isoforms is similar to that of the mESCs 

system whereby RUNX1b precedes RUNX1c (Challen and 

Goodell, 2010; Ditadi et al., 2015; Ng et al., 2016), whereas 

recent papers report that RUNX1c is expressed first (Angelos 

et al., 2018; Navarro-Montero et al., 2017). Similar to data 

obtained in mice, RNA-seq on single cells from human em-

bryos demonstrated that RUNX1 expression can be detected 

in cells with arterial endothelial gene expression profiles (like-

ly constituting both endothelium and HE), and as the cells 

differentiate to HSPCs, the proportion of RUNX1 expressing 

cells increases (Zeng et al., 2019).

 Modulation of gene dosage has been extensively used to 

assess the effect of RUNX1 dosage changes in ontogeny. 

Although total Runx1 KO is embryonic lethal, heterozygous 

mice appear unaffected (North et al., 1999; Okuda et al., 

1996; Wang et al., 1996a). However, closer inspection re-

vealed profound effects on the window of HSC emergence 

which is expedited by approximately half a day (Cai et al., 

2000; Mukouyama et al., 2000; Wang et al., 1996a; 1996b). 

In contrast, a more severe reduction of Runx1 levels, by ho-

mozygous disruption of the P2 promoter, leads to postnatal 

death (Bee et al., 2010; Pozner et al., 2007). Potential dosage 

effects are also observed when the RUNX1 non-DNA binding 

partner Cbfβ is deleted (Niki et al., 1997; Sasaki et al., 1996; 

Wang et al., 1996b). Indeed, although Cbfβ knockout mice 

appear to phenocopy the Runx1 KO models, generation 

of hypomorphic Cbfβ alleles resulted in a slight delay in the 

window of mortality when compared to the Runx1 KO an-

imals and the presence of a few hematopoietic progenitors 

in these embryos (Wang et al., 1996b). Evidence from the 

mESCs system, closely modeling yolk sac hematopoiesis, is 

in line with the data obtained in vivo and demonstrated that 

the reduction of RUNX1 through haploinsufficiency expedites 

blood development by 12 h (Lacaud et al., 2002; Lacaud 

et al., 2004). Conversely, overexpression of RUNX1 in both 

human and mESCs blocks hematopoiesis. In hESCs, RUNX1 

overexpression from the ESC stage onwards has no effect on 

mesoderm commitment but disrupts subsequent endothe-

lial and HE specification (Chen et al., 2017). Overexpression 

in mESCs derived HE appears to induce an accelerated EHT 

without the emergence of mature hematopoietic cells, while 

low levels of Runx1 can induce a productive EHT (Lie-A-Ling 

Table 1. Post translational modifications of RUNX1

Post translational 

modification
Effect Modifier Target domain

Target residues 

(Runx1b)

Serine/threonine  

phosphorylation (1)

Increased transactivation,  

decreased stability

ERK Predominatly C-term  

transactivaton domain

S249, S266, S276, 

S435, T273

Serine/threonine  

phosphorylation (1)

Increased transactivation,  

decreased stability

Hip2k Predominatly C-term  

transactivaton domain

S249, S276, T273

Serine/threonine  

phosphorylation (1, 2)

Increased transactivation,  

decreased stability

CDK Predominatly C-term  

transactivaton domain

S21, S249, S266, S276, 

S397, T273

Tyrosine phosphorylation 

(3)

Increased transactivation,  

increased stability,  

reduced HDAC interaction,  

increased DNA binding

Src kinase Predominatly C-term  

inhibitory domain

Y260, Y375, Y378, 

Y379, Y386

Methylation (4) Reduced SIN3a interaction,  

increased transactivation activity

PRMT1 C-term inhibitory domain R2016 and R210

Methylation (5) Reduced transactivation via  

increased co-repressor DPF2  

binding

PRMT4 C-term transactivation  

domain

R223

Acetylation (6) Reduced DNA binding,  

reduced transactivation

p300/CBP N-terminus K24, K43

Ubiquitination (7) Increased degradation STUB1 E3  

ubiquitin ligase

Predominantly runt domain K24, K43, K83, 90, 125, 

144, 167, 182, 188 

(potential targets)

SUMOylation (8) Unknown (reduced transactivation 

shown for RUNX3)

PIAS1 Runt domain K144

Prolyl isomerization (9) Increased acetylation, stability  

and transactivation activity

PIN1 Not defined Not defined

Currently described post translational modifications of RUNX1 and their effect on RUNX1. All amino acid residues are numbered based on 

RUNX1b. The number between brackets (#) refers to the following citations: 1, (Aikawa et al., 2006; Biggs et al., 2006; Imai et al., 2004; 

Tanaka et al., 1996; Wee et al., 2008; Zhang et al., 2004); 2, (Guo and Friedman, 2011); 3, (Huang et al., 2012; Leong et al., 2016); 4, 

(Zhao et al., 2008); 5, (Vu et al., 2013); 6, (Yamaguchi et al., 2004); 7, (Shang et al., 2009; Yonezawa et al., 2017); 8, (Kim et al., 2014); 9, 

(Islam et al., 2014). 
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et al., 2018). Furthermore, it was also demonstrated that 

RUNX1 is required for both the initiation and completion of 

EHT and that both events may require a different dose of 

RUNX1.

 Taken together, the current data indicate that the initial 

establishment of the hematopoietic system relies on a low 

dose of RUNX1 and that careful modulation of this low dose 

controls the dynamic and progression of blood formation 

(Fig. 1C).

RUNX1 mutations and requirement in leukemia 
Considering its importance in the ontogeny of the hemato-

poietic system, it is not surprising that RUNX1 has been found 

to be a recurrent target of genomic alterations in hematolog-

ical disorders (reviewed in Bellissimo and Speck, 2017; Sood 

et al., 2017). RUNX1 is implicated in more than 50 chromo-

somal translocations leading to pediatric acute lymphoblastic 

leukemia (ALL), AML and myelodysplastic syndrome (MDS). 

In addition to translocations, mono or bi-allelic somatic mu-

tations of RUNX1 have been documented in MDS, AML, ALL 

and chronic myelomonocytic leukemia (CMML). Finally, ger-

mline mono-allelic mutations of RUNX1 are associated with 

familial platelet disorder with predisposition to AML (FPD/

AML).

 In terms of dosage, high levels of RUNX1 mRNA are fre-

quently observed in AML, T cell-ALL (T-ALL) and B cell-ALL 

(B-ALL) (Sun et al., 2019). Increased RUNX1 transcription is 

in particular observed in B-ALLs and is associated with the fu-

sion of ETV6 to RUNX1 (TEL/AML1) (Gandemer et al., 2007; 

Robinson et al., 2003; Soulier et al., 2003). In this context, 

increased RUNX1 mRNA is a positive prognostic marker al-

though its precise role is unclear. In T-ALL, the non-mutated 

WT RUNX1 allele is important for leukemogenesis and tumor 

survival (Choi et al., 2017). Here, RUNX1 is required for the 

expression of a subset of TAL-1 and Notch regulated genes, 

including MYB and MYC, which are required for mainte-

nance of the leukemia. Consequently, the deletion of WT 

Runx1 in a mouse T-ALL model or small molecule mediated 

inhibition of RUNX1 in patient samples can impair leukemic 

growth. Interestingly, RUNX1 inhibition did not affect normal 

hematopoietic cells, indicating a specific requirement for WT 

RUNX1 in T-ALL cells (Choi et al., 2017).

 In AMLs, increased RUNX1 transcript levels have been 

associated with both, de-novo AMLs and AMLs harboring 

the FLT3-ITD (internal tandem duplication) (Behrens et al., 

2017; Salarpour et al., 2017). In the latter case, RUNX1 

cooperates with FLT3 to induce leukemia. Also, it is striking 

that RUNX1 mutations appear to be absent in patients with 

leukemogenic fusion protein leukemias (Patel et al., 2012; 

Schnittger et al., 2011; Tang et al., 2009). In this context, 

dependency on WT RUNX1 has been shown for AML1-ETO 

(t8;21), CBFB-SMMHC (inv16), MLL-AF9, and CBFB-MYH11 

(inv16) translocation leukemias (Ben-Ami et al., 2013; Goya-

ma et al., 2013; Hyde et al., 2015). In the case of AML1-ETO, 

WT RUNX1 and the RUNX1-ETO fusions both target many 

identical sites in the genome. However, binding is mutually 

exclusive and it is the balance between the two proteins that 

is driving the transcriptional networks maintaining leukemia 

(Ptasinska et al., 2014). Investigation of CBFB-MYH11 (inv16) 

has shown that leukemia containing fusion protein variants 

with reduced WT RUNX1 binding/inhibition are more leuke-

mogenic than their stronger RUNX1 inhibitory counterparts 

(Hyde et al., 2015; Kamikubo et al., 2010). The need for 

the right balance between oncogenic mutation/fusion and 

WT RUNX1 is further highlighted by the finding that patient 

samples with intermediate WT RUNX1 levels tend to have a 

poor prognosis (Morita et al., 2017a). Additionally, depletion 

of RUNX1 has been shown to lead to compensation by the 

other RUNX family members RUNX2 and RUNX3 (Morita et 

al., 2017a; 2017b). The addiction of leukemia to WT RUNX1 

extends to AML expressing mutated forms of RUNX1, with 

its knockdown negatively affecting leukemic cells (Mill et al., 

2019). Finally, patient studies demonstrated allelic imbalanc-

es in the transcriptional activity of mutant and WT alleles, 

further highlighting the potential importance of the dosage 

of WT RUNX1 in a leukemic context (Batcha et al., 2019).

RUNX1 IN EPITHELIAL TISSUES AND CANCERS

The role of RUNX1 dosage during the development and ho-

meostasis of epithelial tissues remains less documented than 

in the hematopoietic setting. However, increasing evidence 

suggests a role for RUNX1 in various non-hematopoietic 

tissues of epithelial origin (reviewed in Mevel et al., 2019). 

Indeed, high throughput next-generation sequencing has 

revealed relatively high frequencies of genomic alterations 

of RUNX1, and CBFβ  in solid cancers (Blyth et al., 2005; Ito 

et al., 2015), albeit to lower levels than in leukemia (Figs. 2A 

and 2B). Interestingly, while it is yet to be fully determined 

to what extent these alterations contribute to tumor biolo-

gy, mutations of RUNX1 have been associated with loss of 

function (van Bragt et al., 2014). Beyond the presence of 

these mutations, earlier studies identified RUNX1 mRNA as 

part of a 17-gene signature associated with metastasis in a 

panel of adenocarcinomas, including breast and prostate 

cancers, with its expression inversely correlating with tumor 

aggressiveness (Ramaswamy et al., 2003). Overall, under- 

and over-expression of endogenous RUNX1 has been found 

in several solid tumors, reinforcing the idea that it is broadly 

implicated in the biology and pathology of epithelial tissues 

(Blyth et al., 2005; Ito et al., 2015; Scheitz et al., 2012).

RUNX1 in hormone-related cancers 
Hormone-related cancers constitute some of the most com-

mon cancers in women and men, and RUNX1 alterations 

have been reported in all of these malignancies. To date, the 

role of RUNX1 in solid tumorigenesis has been best studied in 

mammary tissue (Riggio and Blyth, 2017). The normal breast 

epithelium is one of the few epithelial tissues for which 

changes in RUNX1 dosage have been reported during normal 

physiology/homeostasis. In addition to differential expression 

levels of RUNX1 in the basal and luminal compartments of 

the mammary ducts, RUNX1 levels have also been shown to 

fluctuate during pregnancy and lactation (Blyth et al., 2010; 

McDonald et al., 2014; van Bragt et al., 2014). In mice, Runx1 

was demonstrated to be a crucial regulator of the ER+ mam-

mary luminal lineage. Deletion of Runx1 led to a reduction of 

ER+ mature luminal cells, which could be rescued by the loss 
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Fig. 2. Meta-analysis of RUNX1 alterations and prognostic value in the TCGA PanCancer atlas. (A) Frequency of RUNX1 genomic 

alterations across the TCGA PanCancer atlas. Cancers with no alterations were excluded. Cancers affecting the hematopoietic system 

are colored in pink, hormone related cancers in blue, cancers of soft tissues in green, and other epithelial cancers in grey. (B) Proportion 

of RUNX1 amplification, homozygous deletion, fusion and mutation in cancers affecting the hematopoietic system, hormone related 

cancers, and additional epithelial cancers. Soft tissue cancers were excluded from these analyses due to the small number of patients 

affected. (C) Prognostic value of RUNX1 mRNA expression using the TCGA PanCancer Atlas expression data, in terms of Disease-Free 

Survival. Datasets of the TCGA PanCancer Atlas were downloaded from cBioPortal (https://www.cbioportal.org/). Briefly, patients were 

split in RUNX1-High and RUNX1-Low groups using the “surv_cutpoint” function of the “survminer” R package (“minprop” argument set 

to 0.1). Cancers were then separated into two groups, depending on whether RUNX1-High and RUNX1-Low groups are significantly 

associated with a better prognosis (P value < 0.05 using the univariate log-rank test). Representative examples of the corresponding 

Kaplan–Meier curves are shown for the Invasive Breast Carcinoma and Cervical Adenocarcinoma datasets (defined by the “Cancer Type” 

column of the TCGA PanCancer Atlas clinical data).
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of either Trp53 or Rb1 (van Bragt et al., 2014). With regards 

to cancer, several studies involving large patient cohorts have 

identified recurrent CBFβ and RUNX1 mutations (Banerji et 

al., 2012; Cancer Genome Atlas Network, 2012; Ellis et al., 

2012; Kas et al., 2017; Nik-Zainal et al., 2016; Pereira et al., 

2016). At the protein level, high-grade primary breast tumors 

also displayed in general reduced levels of RUNX1 compared 

to low/mid-grade tumors (Kadota et al., 2010). These obser-

vations have led to the hypothesis that RUNX1 could have a 

tumor suppressor function. The proliferation of ER+ breast 

cancer cells was increased upon RUNX1 knockdown, which 

led to estrogen-mediated AXIN1 suppression and enhanced 

β-catenin activation (Chimge et al., 2016). In agreement with 

a tumor suppressor role, a link has emerged between RUNX1 

and suppression of the epithelial-to-mesenchymal transition 

(EMT) process. Indeed, downregulation of RUNX1 in the 

normal mammary epithelial cell line MCF10A was sufficient 

to induce hyperproliferation and abnormal morphogenesis 

(Wang et al., 2011). The morphological changes observed 

upon RUNX1 knockdown were characteristic of an EMT, and 

associated with the activation of transforming growth factor 

β (TGFβ) and WNT signaling pathways (Hong et al., 2017). 

Both RUNX1 and RUNX3 were also shown to prevent the in-

duction of YAP-mediated EMT in this same cell line (Kulkarni 

et al., 2018). Likewise, the RUNX1-CBFβ complex was able to 

prevent the migration potential of the ER+ breast cancer cell 

line MCF7 in an ER-dependent manner (Pegg et al., 2019). 

The emerging role of RUNX1 in EMT is not unexpected con-

sidering its well documented role in EHT, a process often re-

ferred to as ‘EMT-like’ (Hamidi and Sheng, 2018; Monteiro et 

al., 2016). However, while RUNX1 is critical for the induction 

of EHT during hematopoietic development, it appears to act 

as a gatekeeper of EMT in breast cancer cells.

 In contrast to its putative tumor suppressive functions, 

RUNX1 is also believed to be associated with oncogenic roles. 

Indeed, higher RUNX1 mRNA levels were found in the tri-

ple-negative breast cancer subgroup (Karn et al., 2011; Rody 

et al., 2011). This was later corroborated by a strong correla-

tion between high RUNX1 protein levels and poor prognosis 

in triple-negative and ER-negative breast cancers (Ferrari et 

al., 2014). Increased expression of RUNX1 was also associ-

ated with disease progression in patient samples and in the 

MMTV‐PyMT mouse model. Interestingly, the invasiveness of 

the cells isolated from this mouse model could be repressed 

by knocking-down Runx1 expression (Browne et al., 2015), 

suggesting that its role in EMT may be context-dependent.

 Beyond breast cancer, overexpression of RUNX1 was cor-

related with overexpression of p21WAF1/CIP1 in invasive 

endometrioid carcinoma, where it was suggested to play a 

role in promoting myometrial infiltration (Planaguma et al., 

2004; 2006). In this respect, Doll and colleagues found that 

ectopic overexpression of RUNX1 in the endometrial cancer 

cell line HEC1A was associated with the establishment of 

distant metastasis (Doll et al., 2009). High levels of RUNX1 

were also reported in human epithelial ovarian tumors, and 

its knockdown in the SKOV-3 cell line led to a decrease in 

proliferation, migration, and invasion (Keita et al., 2013).

 Although less substantial than in female-related cancers, 

there is accumulating evidence for a potential role of RUNX1 

in prostate cancer. Single-nucleotide polymorphisms within 

the RUNX1 gene—such as the rs2253319 polymorphism—

were associated with an increased risk of prostate cancer 

progression and metastasis (Huang et al., 2011). RUNX1 

was also found amplified in a significant proportion of neu-

roendocrine castration-resistant prostate cancer (Beltran et 

al., 2016). However, the biological relevance of these alter-

ations, if any, remains unknown. Contrasting studies looking 

at RUNX1 expression in prostate cancer have reported that 

RUNX1 mRNA increases with pathological stage (Yeh et al., 

2009), while protein levels have been reported to be de-

creased in advanced forms of the disease (Takayama et al., 

2015). Interestingly, the links between RUNX1 and hormones 

reported in breast cancer (Riggio and Blyth, 2017) seem 

to extend to the prostate gland which is particularly rich in 

androgens. In Nkx3.1/Pten mutant mice, prolonged exposure 

to reduced androgens levels resulted in prostate tumors with 

up-regulated Runx1 (Banach-Petrosky et al., 2007). RUNX1 

has also been shown to be a downstream target of androgen 

receptor signaling, and is thought to play divergent roles in 

AR-dependent and castration-resistant prostate cancer cell 

lines (Takayama et al., 2015). With regards to the growing 

importance of stroma-cancer interactions, downregulation 

of RUNX1 expression in mesenchymal stem cells was shown 

to reduce their proliferative potential in response to TGFβ, 

before their differentiation into prostate cancer-associated 

myofibroblasts (Kim et al., 2014).

RUNX1 in skin cancers 
In keeping with its role in hematopoiesis, Runx1 dosage has 

been found to be important for hair follicle stem cells. During 

homeostasis, reduced levels of Runx1 favors self-renewal of 

bulge stem cells (Hoi et al., 2010), while high Runx1 expres-

sion promotes differentiation into early progenitor hair germ 

cells (Lee et al., 2014). RUNX1 has been linked to skin cancer 

in mice, where its activated expression during chemically 

induced skin carcinogenesis was proposed to be oncogenic 

(Hoi et al., 2010). In line with this, loss of RUNX1 impaired 

the proliferation of human oral and skin squamous cell carci-

noma cell lines (Scheitz et al., 2012). Runx1 was also found 

essential for the survival and proliferation of cultured kera-

tinocytes (Hoi et al., 2010), notably by regulating fatty acid 

production (Jain et al., 2018).

Other tissues 
RUNX1 has also been linked with tumors of the gastrointesti-

nal tract, where it was found to be frequently downregulated 

(Miyagawa et al., 2006; Sakakura et al., 2005). In conditional 

mouse models, Runx1 deletion is sufficient to induce intes-

tinal tumorigenesis (Fijneman et al., 2012). In gastric cancer 

cell lines, both the knockdown of RUNX1 and its therapeutic 

inhibition resulted in reduced tumorigenic potential via sup-

pression of the ErbB2/HER2 signaling pathway (Mitsuda et al., 

2018). Finally, the previously noted emerging link between 

RUNX1 and EMT has also been documented in colorectal 

cancer (Li et al., 2019), and renal fibrosis (Zhou et al., 2018) in 

which RUNX1 acts as an inducer of EMT. Increased expression 

of RUNX1 was also predictive of poor prognosis in patients 

diagnosed with clear cell renal cell carcinoma (Fu et al., 2019).
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CONCLUSIONS

It is now well established that RUNX1 dosage is important 

during normal development and homeostasis of hemato-

poietic tissues, and there is a growing body of evidence indi-

cating that it is important in epithelial tissues as well. These 

studies highlight the multifaceted characteristics of RUNX1, 

in particular in non-hematopoietic tissues, where it was 

not originally thought to be involved. Alterations of RUNX1 

dosage in these tissues were initially revealed by large scale 

genomic studies and these results are reinforced by growing 

experimental evidence implicating RUNX1 in crucial hallmarks 

of cancer progression such as cell proliferation, EMT or DNA 

repair (Tay et al., 2018). It has now become clear that RUNX1 

can act both as an oncogenic or a tumor-suppressive factor 

(Blyth et al., 2005; Ito et al., 2015; Neil et al., 2017). Intrigu-

ingly, the implication of RUNX1 in both female and male 

related cancers has revealed a close relationship with ER and 

AR, which warrants further investigations. While the func-

tional evidence between RUNX1 dosage and cancer devel-

opment is often still lacking and requires further work, it has 

become evident that varying levels of RUNX1 expression can 

be used as markers of tumor progression in specific clinical 

cohorts (Fig. 2C).

 Finally, although systems modifying RUNX1 dosage via 

(conditional) knock-out alleles as well as controlled tran-

scriptional regulation provide valuable information on how 

RUNX1 dosage can affect normal physiology and cancer, 

detailed stage and cell type-specific information on physio-

logical RUNX1 dosage levels would drive our understanding 

even further. In this context, it should be emphasized that 

when evaluating RUNX1 dosage, both the amount of protein 

as well as its activation status should be taken into consider-

ation. Currently, it is still very challenging to fully assess the 

different parameters regulating RUNX1 dosages. However, 

the continuous improvement of single-cell technologies 

might soon allow us to interrogate, at a single-cell level, the 

quantity and ratios of RUNX1 isoforms, as well as their PTMs. 

Such data would provide valuable insights on RUNX1 dosage 

at the single cell level and would allow us to better investi-

gate their functions.
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