Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0301

RUNX1 Dosage in Development and Cancer  

Lie-a-ling, Michael (Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester)
Mevel, Renaud (Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester)
Patel, Rahima (Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester)
Blyth, Karen (Cancer Research UK Beatson Institute)
Baena, Esther (Cancer Research UK Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester)
Kouskoff, Valerie (Division of Developmental Biology & Medicine, The University of Manchester)
Lacaud, Georges (Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester)
Abstract
The transcription factor RUNX1 first came to prominence due to its involvement in the t(8;21) translocation in acute myeloid leukemia (AML). Since this discovery, RUNX1 has been shown to play important roles not only in leukemia but also in the ontogeny of the normal hematopoietic system. Although it is currently still challenging to fully assess the different parameters regulating RUNX1 dosage, it has become clear that the dose of RUNX1 can greatly affect both leukemia and normal hematopoietic development. It is also becoming evident that varying levels of RUNX1 expression can be used as markers of tumor progression not only in the hematopoietic system, but also in non-hematopoietic cancers. Here, we provide an overview of the current knowledge of the effects of RUNX1 dosage in normal development of both hematopoietic and epithelial tissues and their associated cancers.
Keywords
development; dosage; hematopoiesis; runx1; tumorigenesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Browne, G., Taipaleenmaki, H., Bishop, N.M., Madasu, S.C., Shaw, L.M., van Wijnen, A.J., Stein, J.L., Stein, G.S., and Lian, J.B. (2015). Runx1 is associated with breast cancer progression in MMTV-PyMT transgenic mice and its depletion in vitro inhibits migration and invasion. J. Cell. Physiol. 230, 2522-2532.   DOI
2 Bruno, L., Ramlall, V., Studer, R.A., Sauer, S., Bradley, D., Dharmalingam, G., Carroll, T., Ghoneim, M., Chopin, M., Nutt, S.L., et al. (2019). Selective deployment of transcription factor paralogs with submaximal strength facilitates gene regulation in the immune system. Nat. Immunol. 20, 1372-1380.   DOI
3 Cai, Z., de Bruijn, M., Ma, X., Dortland, B., Luteijn, T., Downing, R.J., and Dzierzak, E. (2000). Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity 13, 423-431.   DOI
4 Cancer Genome Atlas Network (2012). Comprehensive molecular portraits of human breast tumours. Nature 490, 61-70.   DOI
5 Challen, G.A. and Goodell, M.A. (2010). Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells. Exp. Hematol. 38, 403-416.   DOI
6 Chen, B., Teng, J., Liu, H., Pan, X., Zhou, Y., Huang, S., Lai, M., Bian, G., Mao, B., Sun, W., et al. (2017). Inducible overexpression of RUNX1b/c in human embryonic stem cells blocks early hematopoiesis from mesoderm. J. Mol. Cell Biol. 9, 262-273.   DOI
7 Tahirov, T.H., Inoue-Bungo, T., Morii, H., Fujikawa, A., Sasaki, M., Kimura, K., Shiina, M., Sato, K., Kumasaka, T., Yamamoto, M., et al. (2001). Structural analyses of DNA recognition by the AML1/Runx-1 runt domain and its allosteric control by CBFbeta. Cell 104, 755-767.   DOI
8 Doll, A., Gonzalez, M., Abal, M., Llaurado, M., Rigau, M., Colas, E., Monge, M., Xercavins, J., Capella, G., Diaz, B., et al. (2009). An orthotopic endometrial cancer mouse model demonstrates a role for RUNX1 in distant metastasis. Int. J. Cancer 125, 257-263.   DOI
9 Swiers, G., Baumann, C., O'Rourke, J., Giannoulatou, E., Taylor, S., Joshi, A., Moignard, V., Pina, C., Bee, T., Kokkaliaris, K.D., et al. (2013). Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level. Nat. Commun. 4, 2924.   DOI
10 Tachibana, M., Tezuka, C., Muroi, S., Nishimoto, S., Katsumoto, T., Nakajima, A., Kitabayashi, I., and Taniuchi, I. (2008). Phosphorylation of Runx1 at Ser249, Ser266, and Ser276 is dispensable for bone marrow hematopoiesis and thymocyte differentiation. Biochem. Biophys. Res. Commun. 368, 536-542.   DOI
11 Takayama, K., Suzuki, T., Tsutsumi, S., Fujimura, T., Urano, T., Takahashi, S., Homma, Y., Aburatani, H., and Inoue, S. (2015). RUNX1, an androgenand EZH2-regulated gene, has differential roles in AR-dependent and -independent prostate cancer. Oncotarget 6, 2263-2276.   DOI
12 Tanaka, T., Kurokawa, M., Ueki, K., Tanaka, K., Imai, Y., Mitani, K., Okazaki, K., Sagata, N., Yazaki, Y., Shibata, Y., et al. (1996). The extracellular signalregulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Mol. Cell. Biol. 16, 3967-3979.   DOI
13 Tang, J.L., Hou, H.A., Chen, C.Y., Liu, C.Y., Chou, W.C., Tseng, M.H., Huang, C.F., Lee, F.Y., Liu, M.C., Yao, M., et al. (2009). AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 114, 5352-5361.   DOI
14 Pozner, A., Lotem, J., Xiao, C., Goldenberg, D., Brenner, O., Negreanu, V., Levanon, D., and Groner, Y. (2007). Developmentally regulated promoterswitch transcriptionally controls Runx1 function during embryonic hematopoiesis. BMC Dev. Biol. 7, 84.   DOI
15 Planaguma, J., Diaz-Fuertes, M., Gil-Moreno, A., Abal, M., Monge, M., Garcia, A., Baro, T., Thomson, T.M., Xercavins, J., Alameda, F., et al. (2004). A differential gene expression profile reveals overexpression of RUNX1/AML1 in invasive endometrioid carcinoma. Cancer Res. 64, 8846-8853.   DOI
16 Planaguma, J., Gonzalez, M., Doll, A., Monge, M., Gil-Moreno, A., Baro, T., Garcia, A., Xercavins, J., Alameda, F., Abal, M., et al. (2006). The upregulation profiles of p21WAF1/CIP1 and RUNX1/AML1 correlate with myometrial infiltration in endometrioid endometrial carcinoma. Hum. Pathol. 37, 1050-1057.   DOI
17 Pozner, A., Goldenberg, D., Negreanu, V., Le, S.Y., Elroy-Stein, O., Levanon, D., and Groner, Y. (2000). Transcription-coupled translation control of AML1/RUNX1 is mediated by cap- and internal ribosome entry sitedependent mechanisms. Mol. Cell. Biol. 20, 2297-2307.   DOI
18 Aikawa, Y., Nguyen, L.A., Isono, K., Takakura, N., Tagata, Y., Schmitz, M.L., Koseki, H., and Kitabayashi, I. (2006). Roles of HIPK1 and HIPK2 in AML1- and p300-dependent transcription, hematopoiesis and blood vessel formation. EMBO J. 25, 3955-3965.   DOI
19 Ptasinska, A., Assi, S.A., Martinez-Soria, N., Imperato, M.R., Piper, J., Cauchy, P., Pickin, A., James, S.R., Hoogenkamp, M., Williamson, D., et al. (2014). Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal. Cell Rep. 8, 1974-1988.   DOI
20 Ramaswamy, S., Ross, K.N., Lander, E.S., and Golub, T.R. (2003). A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33, 49-54.   DOI
21 Robinson, H.M., Broadfield, Z.J., Cheung, K.L., Harewood, L., Harris, R.L., Jalali, G.R., Martineau, M., Moorman, A.V., Taylor, K.E., Richards, S., et al. (2003). Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia 17, 2249-2250.   DOI
22 Patel, J.P., Gonen, M., Figueroa, M.E., Fernandez, H., Sun, Z., Racevskis, J., Van Vlierberghe, P., Dolgalev, I., Thomas, S., Aminova, O., et al. (2012). Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 366, 1079-1089.   DOI
23 Pegg, H.J., Harrison, H., Rogerson, C., and Shore, P. (2019). The RUNX transcriptional coregulator, CBFbeta, suppresses migration of ER(+) breast cancer cells by repressing ERalpha-mediated expression of the migratory factor TFF1. Mol. Cancer Res. 17, 1015-1023.   DOI
24 Pereira, B., Chin, S.F., Rueda, O.M., Vollan, H.K., Provenzano, E., Bardwell, H.A., Pugh, M., Jones, L., Russell, R., Sammut, S.J., et al. (2016). The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat. Commun. 7, 11479.   DOI
25 Rennert, J., Coffman, J.A., Mushegian, A.R., and Robertson, A.J. (2003). The evolution of Runx genes I. A comparative study of sequences from phylogenetically diverse model organisms. BMC Evol. Biol. 3, 4.   DOI
26 Riggio, A.I. and Blyth, K. (2017). The enigmatic role of RUNX1 in femalerelated cancers - current knowledge & future perspectives. FEBS J. 284, 2345-2362.   DOI
27 Rody, A., Karn, T., Liedtke, C., Pusztai, L., Ruckhaeberle, E., Hanker, L., Gaetje, R., Solbach, C., Ahr, A., Metzler, D., et al. (2011). A clinically relevant gene signature in triple negative and basal-like breast cancer. Breast Cancer Res. 13, R97.   DOI
28 Sakakura, C., Hagiwara, A., Miyagawa, K., Nakashima, S., Yoshikawa, T., Kin, S., Nakase, Y., Ito, K., Yamagishi, H., Yazumi, S., et al. (2005). Frequent downregulation of the runt domain transcription factors RUNX1, RUNX3 and their cofactor CBFB in gastric cancer. Int. J. Cancer 113, 221-228.   DOI
29 Aronson, B.D., Fisher, A.L., Blechman, K., Caudy, M., and Gergen, J.P. (1997). Groucho-dependent and -independent repression activities of Runt domain proteins. Mol. Cell. Biol. 17, 5581-5587.   DOI
30 Angelos, M.G., Abrahante, J.E., Blum, R.H., and Kaufman, D.S. (2018). Single cell resolution of human hematoendothelial cells defines transcriptional signatures of hemogenic endothelium. Stem Cells 36, 206-217.   DOI
31 Bae, S.C., Yamaguchi-Iwai, Y., Ogawa, E., Maruyama, M., Inuzuka, M., Kagoshima, H., Shigesada, K., Satake, M., and Ito, Y. (1993). Isolation of PEBP2 alpha B cDNA representing the mouse homolog of human acute myeloid leukemia gene, AML1. Oncogene 8, 809-814.
32 Banach-Petrosky, W., Jessen, W.J., Ouyang, X., Gao, H., Rao, J., Quinn, J., Aronow, B.J., and Abate-Shen, C. (2007). Prolonged exposure to reduced levels of androgen accelerates prostate cancer progression in Nkx3.1; Pten mutant mice. Cancer Res. 67, 9089-9096.   DOI
33 Banerji, S., Cibulskis, K., Rangel-Escareno, C., Brown, K.K., Carter, S.L., Frederick, A.M., Lawrence, M.S., Sivachenko, A.Y., Sougnez, C., Zou, L., et al. (2012). Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486, 405-409.   DOI
34 Baron, C.S., Kester, L., Klaus, A., Boisset, J.C., Thambyrajah, R., Yvernogeau, L., Kouskoff, V., Lacaud, G., van Oudenaarden, A., and Robin, C. (2018). Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta. Nat. Commun. 9, 2517.   DOI
35 Behrens, K., Maul, K., Tekin, N., Kriebitzsch, N., Indenbirken, D., Prassolov, V., Muller, U., Serve, H., Cammenga, J., and Stocking, C. (2017). RUNX1 cooperates with FLT3-ITD to induce leukemia. J. Exp. Med. 214, 737-752.   DOI
36 Batcha, A.M.N., Bamopoulos, S.A., Kerbs, P., Kumar, A., Jurinovic, V., Rothenberg-Thurley, M., Ksienzyk, B., Philippou-Massier, J., Krebs, S., Blum, H., et al. (2019). Allelic imbalance of recurrently mutated genes in acute myeloid leukaemia. Sci. Rep. 9, 11796.   DOI
37 Bee, T., Liddiard, K., Swiers, G., Bickley, S.R., Vink, C.S., Jarratt, A., Hughes, J.R., Medvinsky, A., and de Bruijn, M.F. (2009). Alternative Runx1 promoter usage in mouse developmental hematopoiesis. Blood Cells Mol. Dis. 43, 35-42.   DOI
38 Bee, T., Swiers, G., Muroi, S., Pozner, A., Nottingham, W., Santos, A.C., Li, P.S., Taniuchi, I., and de Bruijn, M.F. (2010). Nonredundant roles for Runx1 alternative promoters reflect their activity at discrete stages of developmental hematopoiesis. Blood 115, 3042-3050.   DOI
39 Bellissimo, D.C. and Speck, N.A. (2017). RUNX1 mutations in inherited and sporadic leukemia. Front. Cell Dev. Biol. 5, 111.   DOI
40 Beltran, H., Prandi, D., Mosquera, J.M., Benelli, M., Puca, L., Cyrta, J., Marotz, C., Giannopoulou, E., Chakravarthi, B.V., Varambally, S., et al. (2016). Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22, 298-305.   DOI
41 Ben-Ami, O., Friedman, D., Leshkowitz, D., Goldenberg, D., Orlovsky, K., Pencovich, N., Lotem, J., Tanay, A., and Groner, Y. (2013). Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Rep. 4, 1131-1143.   DOI
42 Ditadi, A., Sturgeon, C.M., Tober, J., Awong, G., Kennedy, M., Yzaguirre, A.D., Azzola, L., Ng, E.S., Stanley, E.G., French, D.L., et al. (2015). Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages. Nat. Cell Biol. 17, 580-591.   DOI
43 Biggs, J.R., Peterson, L.F., Zhang, Y., Kraft, A.S., and Zhang, D.E. (2006). AML1/RUNX1 phosphorylation by cyclin-dependent kinases regulates the degradation of AML1/RUNX1 by the anaphase-promoting complex. Mol. Cell. Biol. 26, 7420-7429.   DOI
44 Chen, M.J., Yokomizo, T., Zeigler, B.M., Dzierzak, E., and Speck, N.A. (2009). Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457, 887-891.   DOI
45 Chimge, N.O., Little, G.H., Baniwal, S.K., Adisetiyo, H., Xie, Y., Zhang, T., O'Laughlin, A., Liu, Z.Y., Ulrich, P., Martin, A., et al. (2016). RUNX1 prevents oestrogen-mediated AXIN1 suppression and beta-catenin activation in ER-positive breast cancer. Nat. Commun. 7, 10751.   DOI
46 Choi, A., Illendula, A., Pulikkan, J.A., Roderick, J.E., Tesell, J., Yu, J., Hermance, N., Zhu, L.J., Castilla, L.H., Bushweller, J.H., et al. (2017). RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia. Blood 130, 1722-1733.   DOI
47 Chuang, L.S., Ito, K., and Ito, Y. (2013). RUNX family: regulation and diversification of roles through interacting proteins. Int. J. Cancer 132, 1260-1271.   DOI
48 Salarpour, F., Goudarzipour, K., Mohammadi, M.H., Ahmadzadeh, A., Faraahi, S., and Farsani, M.A. (2017). Evaluation of CCAAT/enhancer binding protein (C/EBP) alpha (CEBPA) and runt-related transcription factor 1 (RUNX1) expression in patients with de novo acute myeloid leukemia. Ann. Hum. Genet. 81, 276-283.   DOI
49 Sasaki, K., Yagi, H., Bronson, R.T., Tominaga, K., Matsunashi, T., Deguchi, K., Tani, Y., Kishimoto, T., and Komori, T. (1996). Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc. Natl. Acad. Sci. U. S. A. 93, 12359-12363.   DOI
50 Draper, J.E., Sroczynska, P., Tsoulaki, O., Leong, H.S., Fadlullah, M.Z., Miller, C., Kouskoff, V., and Lacaud, G. (2016). RUNX1B expression is highly heterogeneous and distinguishes megakaryocytic and erythroid lineage fate in adult mouse hematopoiesis. PLoS Genet 12, e1005814.   DOI
51 Dzierzak, E. and Bigas, A. (2018). Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell 22, 639-651.   DOI
52 Eilken, H.M., Nishikawa, S., and Schroeder, T. (2009). Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457, 896-900.   DOI
53 Ellis, M.J., Ding, L., Shen, D., Luo, J., Suman, V.J., Wallis, J.W., Van Tine, B.A., Hoog, J., Goiffon, R.J., Goldstein, T.C., et al. (2012). Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486, 353-360.   DOI
54 Ferrari, N., Mohammed, Z.M., Nixon, C., Mason, S.M., Mallon, E., McMillan, D.C., Morris, J.S., Cameron, E.R., Edwards, J., and Blyth, K. (2014). Expression of RUNX1 correlates with poor patient prognosis in triple negative breast cancer. PLoS One 9, e100759.   DOI
55 Fijneman, R.J., Anderson, R.A., Richards, E., Liu, J., Tijssen, M., Meijer, G.A., Anderson, J., Rod, A., O'Sullivan, M.G., Scott, P.M., et al. (2012). Runx1 is a tumor suppressor gene in the mouse gastrointestinal tract. Cancer Sci. 103, 593-599.   DOI
56 Fu, Y., Sun, S., Man, X., and Kong, C. (2019). Increased expression of RUNX1 in clear cell renal cell carcinoma predicts poor prognosis. PeerJ 7, e7854.   DOI
57 Sun, C.C., Li, S.J., Chen, Z.L., Li, G., Zhang, Q., and Li, D.J. (2019). Expression and prognosis analyses of runt-related transcription factor family in human leukemia. Mol. Ther. Oncolytics 12, 103-111.   DOI
58 Blyth, K., Vaillant, F., Jenkins, A., McDonald, L., Pringle, M.A., Huser, C., Stein, T., Neil, J., and Cameron, E.R. (2010). Runx2 in normal tissues and cancer cells: a developing story. Blood Cells Mol. Dis. 45, 117-123.   DOI
59 Blumenthal, E., Greenblatt, S., Huang, G., Ando, K., Xu, Y., and Nimer, S.D. (2017). Covalent modifications of RUNX proteins: structure affects function. Adv. Exp. Med. Biol. 962, 33-44.   DOI
60 Blyth, K., Cameron, E.R., and Neil, J.C. (2005). The RUNX genes: gain or loss of function in cancer. Nat. Rev. Cancer 5, 376-387.   DOI
61 Boisset, J.C., van Cappellen, W., Andrieu-Soler, C., Galjart, N., Dzierzak, E., and Robin, C. (2010). In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464, 116-120.   DOI
62 Bravo, J., Li, Z., Speck, N.A., and Warren, A.J. (2001). The leukemiaassociated AML1 (Runx1)--CBF beta complex functions as a DNA-induced molecular clamp. Nat. Struct. Biol. 8, 371-378.   DOI
63 Sood, R., Kamikubo, Y., and Liu, P. (2017). Role of RUNX1 in hematological malignancies. Blood 129, 2070-2082.   DOI
64 Scheitz, C.J., Lee, T.S., McDermitt, D.J., and Tumbar, T. (2012). Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer. EMBO J. 31, 4124-4139.   DOI
65 Schnittger, S., Dicker, F., Kern, W., Wendland, N., Sundermann, J., Alpermann, T., Haferlach, C., and Haferlach, T. (2011). RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood 117, 2348-2357.   DOI
66 Shang, Y., Zhao, X., Xu, X., Xin, H., Li, X., Zhai, Y., He, D., Jia, B., Chen, W., and Chang, Z. (2009). CHIP functions an E3 ubiquitin ligase of Runx1. Biochem. Biophys. Res. Commun. 386, 242-246.   DOI
67 Soulier, J., Trakhtenbrot, L., Najfeld, V., Lipton, J.M., Mathew, S., Avet- Loiseau, H., De Braekeleer, M., Salem, S., Baruchel, A., Raimondi, S.C., et al. (2003). Amplification of band q22 of chromosome 21, including AML1, in older children with acute lymphoblastic leukemia: an emerging molecular cytogenetic subgroup. Leukemia 17, 1679-1682.   DOI
68 Sroczynska, P., Lancrin, C., Kouskoff, V., and Lacaud, G. (2009). The differential activities of Runx1 promoters define milestones during embryonic hematopoiesis. Blood 114, 5279-5289.   DOI
69 Liakhovitskaia, A., Gribi, R., Stamateris, E., Villain, G., Jaffredo, T., Wilkie, R., Gilchrist, D., Yang, J., Ure, J., and Medvinsky, A. (2009). Restoration of Runx1 expression in the Tie2 cell compartment rescues definitive hematopoietic stem cells and extends life of Runx1 knockout animals until birth. Stem Cells 27, 1616-1624.   DOI
70 Li, Q., Lai, Q., He, C., Fang, Y., Yan, Q., Zhang, Y., Wang, X., Gu, C., Wang, Y., Ye, L., et al. (2019). RUNX1 promotes tumour metastasis by activating the Wnt/beta-catenin signalling pathway and EMT in colorectal cancer. J. Exp. Clin. Cancer Res. 38, 334.   DOI
71 Lie-A-Ling, M., Marinopoulou, E., Lilly, A.J., Challinor, M., Patel, R., Lancrin, C., Kouskoff, V., and Lacaud, G. (2018). Regulation of RUNX1 dosage is crucial for efficient blood formation from hemogenic endothelium. Development 145, dev149419.   DOI
72 Liu, H., Carlsson, L., and Grundstrom, T. (2006). Identification of an N-terminal transactivation domain of Runx1 that separates molecular function from global differentiation function. J. Biol. Chem. 281, 25659-25669.   DOI
73 Goyama, S., Huang, G., Kurokawa, M., and Mulloy, J.C. (2015). Posttranslational modifications of RUNX1 as potential anticancer targets. Oncogene 34, 3483-3492.   DOI
74 Gandemer, V., Rio, A.G., de Tayrac, M., Sibut, V., Mottier, S., Ly Sunnaram, B., Henry, C., Monnier, A., Berthou, C., Le Gall, E., et al. (2007). Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia. BMC Genomics 8, 385.   DOI
75 Ghozi, M.C., Bernstein, Y., Negreanu, V., Levanon, D., and Groner, Y. (1996). Expression of the human acute myeloid leukemia gene AML1 is regulated by two promoter regions. Proc. Natl. Acad. Sci. U. S. A. 93, 1935-1940.   DOI
76 Goode, D.K., Obier, N., Vijayabaskar, M.S., Lie, A.L.M., Lilly, A.J., Hannah, R., Lichtinger, M., Batta, K., Florkowska, M., Patel, R., et al. (2016). Dynamic gene regulatory networks drive hematopoietic specification and differentiation. Dev. Cell 36, 572-587.   DOI
77 Goyama, S., Schibler, J., Cunningham, L., Zhang, Y., Rao, Y., Nishimoto, N., Nakagawa, M., Olsson, A., Wunderlich, M., Link, K.A., et al. (2013). Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J. Clin. Invest. 123, 3876-3888.   DOI
78 Goyama, S., Yamaguchi, Y., Imai, Y., Kawazu, M., Nakagawa, M., Asai, T., Kumano, K., Mitani, K., Ogawa, S., Chiba, S., et al. (2004). The transcriptionally active form of AML1 is required for hematopoietic rescue of the AML1-deficient embryonic para-aortic splanchnopleural (P-Sp) region. Blood 104, 3558-3564.
79 Guo, H. and Friedman, A.D. (2011). Phosphorylation of RUNX1 by cyclindependent kinase reduces direct interaction with HDAC1 and HDAC3. J. Biol. Chem. 286, 208-215.   DOI
80 McDonald, L., Ferrari, N., Terry, A., Bell, M., Mohammed, Z.M., Orange, C., Jenkins, A., Muller, W.J., Gusterson, B.A., Neil, J.C., et al. (2014). RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland. Dis. Model. Mech. 7, 525-534.   DOI
81 Menegatti, S., de Kruijf, M., Garcia-Alegria, E., Lacaud, G., and Kouskoff, V. (2019). Transcriptional control of blood cell emergence. FEBS Lett. 593, 3304-3315.   DOI
82 Mevel, R., Draper, J.E., Lie-A-Ling, M., Kouskoff, V., and Lacaud, G. (2019). RUNX transcription factors: orchestrators of development. Development 146, dev148296.   DOI
83 Telfer, J.C. and Rothenberg, E.V. (2001). Expression and function of a stem cell promoter for the murine CBFalpha2 gene: distinct roles and regulation in natural killer and T cell development. Dev. Biol. 229, 363-382.   DOI
84 Hamidi, S. and Sheng, G. (2018). Epithelial-mesenchymal transition in haematopoietic stem cell development and homeostasis. J. Biochem. 164, 265-275.   DOI
85 Taniuchi, I., Osato, M., and Ito, Y. (2012). Runx1: no longer just for leukemia. EMBO J. 31, 4098-4099.   DOI
86 Tay, L.S., Krishnan, V., Sankar, H., Chong, Y.L., Chuang, L.S.H., Tan, T.Z., Kolinjivadi, A.M., Kappei, D., and Ito, Y. (2018). RUNX poly(ADP-Ribosyl) ation and BLM interaction facilitate the fanconi anemia pathway of DNA repair. Cell Rep. 24, 1747-1755.   DOI
87 van Bragt, M.P., Hu, X., Xie, Y., and Li, Z. (2014). RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells. Elife 3, e03881.   DOI
88 Vu, L.P., Perna, F., Wang, L., Voza, F., Figueroa, M.E., Tempst, P., Erdjument- Bromage, H., Gao, R., Chen, S., Paietta, E., et al. (2013). PRMT4 blocks myeloid differentiation by assembling a methyl-RUNX1-dependent repressor complex. Cell Rep. 5, 1625-1638.   DOI
89 Wang, L., Brugge, J.S., and Janes, K.A. (2011). Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression. Proc. Natl. Acad. Sci. U. S. A. 108, E803-E812.   DOI
90 Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A.H., and Speck, N.A. (1996a). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. U. S. A. 93, 3444-3449.   DOI
91 Huang, G., Shigesada, K., Ito, K., Wee, H.J., Yokomizo, T., and Ito, Y. (2001). Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitinproteasome-mediated degradation. EMBO J. 20, 723-733.   DOI
92 Wang, Q., Stacy, T., Miller, J.D., Lewis, A.F., Gu, T.L., Huang, X., Bushweller, J.H., Bories, J.C., Alt, F.W., Ryan, G., et al. (1996b). The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 87, 697-708.   DOI
93 Mill, C.P., Fiskus, W., DiNardo, C.D., Qian, Y., Raina, K., Rajapakshe, K., Perera, D., Coarfa, C., Kadia, T.M., Khoury, J.D., et al. (2019). RUNX1-targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood 134, 59-73.
94 Mitsuda, Y., Morita, K., Kashiwazaki, G., Taniguchi, J., Bando, T., Obara, M., Hirata, M., Kataoka, T.R., Muto, M., Kaneda, Y., et al. (2018). RUNX1 positively regulates the ErbB2/HER2 signaling pathway through modulating SOS1 expression in gastric cancer cells. Sci. Rep. 8, 6423.   DOI
95 Miyagawa, K., Sakakura, C., Nakashima, S., Yoshikawa, T., Kin, S., Nakase, Y., Ito, K., Yamagishi, H., Ida, H., Yazumi, S., et al. (2006). Down-regulation of RUNX1, RUNX3 and CBFbeta in hepatocellular carcinomas in an early stage of hepatocarcinogenesis. Anticancer Res. 26, 3633-3643.
96 Hoi, C.S., Lee, S.E., Lu, S.Y., McDermitt, D.J., Osorio, K.M., Piskun, C.M., Peters, R.M., Paus, R., and Tumbar, T. (2010). Runx1 directly promotes proliferation of hair follicle stem cells and epithelial tumor formation in mouse skin. Mol. Cell. Biol. 30, 2518-2536.   DOI
97 Hong, D., Fritz, A.J., Gordon, J.A., Tye, C.E., Boyd, J.R., Tracy, K.M., Frietze, S.E., Carr, F.E., Nickerson, J.A., Van Wijnen, A.J., et al. (2019). RUNX1-dependent mechanisms in biological control and dysregulation in cancer. J. Cell. Physiol. 234, 8597-8609.   DOI
98 Hong, D., Messier, T.L., Tye, C.E., Dobson, J.R., Fritz, A.J., Sikora, K.R., Browne, G., Stein, J.L., Lian, J.B., and Stein, G.S. (2017). Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial to mesenchymal transition. Oncotarget 8, 17610-17627.   DOI
99 Huang, H., Woo, A.J., Waldon, Z., Schindler, Y., Moran, T.B., Zhu, H.H., Feng, G.S., Steen, H., and Cantor, A.B. (2012). A Src family kinase-Shp2 axis controls RUNX1 activity in megakaryocyte and T-lymphocyte differentiation. Genes Dev. 26, 1587-1601.   DOI
100 Miyoshi, H., Ohira, M., Shimizu, K., Mitani, K., Hirai, H., Imai, T., Yokoyama, K., Soeda, E., and Ohki, M. (1995). Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res. 23, 2762-2769.   DOI
101 Miyoshi, H., Shimizu, K., Kozu, T., Maseki, N., Kaneko, Y., and Ohki, M. (1991). t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci. U. S. A. 88, 10431-10434.   DOI
102 Monteiro, R., Pinheiro, P., Joseph, N., Peterkin, T., Koth, J., Repapi, E., Bonkhofer, F., Kirmizitas, A., and Patient, R. (2016). Transforming growth factor beta drives hemogenic endothelium programming and the transition to hematopoietic stem cells. Dev. Cell 38, 358-370.   DOI
103 Morita, K., Maeda, S., Suzuki, K., Kiyose, H., Taniguchi, J., Liu, P.P., Sugiyama, H., Adachi, S., and Kamikubo, Y. (2017a). Paradoxical enhancement of leukemogenesis in acute myeloid leukemia with moderately attenuated RUNX1 expressions. Blood Adv. 1, 1440-1451.   DOI
104 Wee, H.J., Voon, D.C., Bae, S.C., and Ito, Y. (2008). PEBP2-beta/CBF-betadependent phosphorylation of RUNX1 and p300 by HIPK2: implications for leukemogenesis. Blood 112, 3777-3787.   DOI
105 Huang, S.P., Lan, Y.H., Lu, T.L., Pao, J.B., Chang, T.Y., Lee, H.Z., Yang, W.H., Hsieh, C.J., Chen, L.M., Huang, L.C., et al. (2011). Clinical significance of runt-related transcription factor 1 polymorphism in prostate cancer. BJU Int. 107, 486-492.   DOI
106 Hyde, R.K., Zhao, L., Alemu, L., and Liu, P. P. (2015). Runx1 is required for hematopoietic defects and leukemogenesis in Cbfb-MYH11 knock-in mice. Leukemia 29, 1771-1778.   DOI
107 Wang, S., Wang, Q., Crute, B.E., Melnikova, I.N., Keller, S.R., and Speck, N.A. (1993). Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol. Cell. Biol. 13, 3324-3339.   DOI
108 Yamaguchi, Y., Kurokawa, M., Imai, Y., Izutsu, K., Asai, T., Ichikawa, M., Yamamoto, G., Nitta, E., Yamagata, T., Sasaki, K., et al. (2004). AML1 is functionally regulated through p300-mediated acetylation on specific lysine residues. J. Biol. Chem. 279, 15630-15638.   DOI
109 Yan, J., Liu, Y., Lukasik, S.M., Speck, N.A., and Bushweller, J.H. (2004). CBFbeta allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium. Nat. Struct. Mol. Biol. 11, 901-906.   DOI
110 Yeh, H.Y., Cheng, S.W., Lin, Y.C., Yeh, C.Y., Lin, S.F. and Soo, V.W. (2009). Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency. BMC Med. Genomics 2, 70.   DOI
111 Yokomizo, T., Hasegawa, K., Ishitobi, H., Osato, M., Ema, M., Ito, Y., Yamamoto, M., and Takahashi, S. (2008). Runx1 is involved in primitive erythropoiesis in the mouse. Blood 111, 4075-4080.   DOI
112 Jiang, Q., Qin, X., Kawane, T., Komori, H., Matsuo, Y., Taniuchi, I., Ito, K., Izumi, S., and Komori, T. (2016). Cbfb2 isoform dominates more potent Cbfb1 and is required for skeletal development. J. Bone Miner. Res. 31, 1391-1404.   DOI
113 Yonezawa, T., Takahashi, H., Shikata, S., Liu, X., Tamura, M., Asada, S., Fukushima, T., Fukuyama, T., Tanaka, Y., Sawasaki, T., et al. (2017). The ubiquitin ligase STUB1 regulates stability and activity of RUNX1 and RUNX1-RUNX1T1. J. Biol. Chem. 292, 12528-12541.   DOI
114 Morita, K., Suzuki, K., Maeda, S., Matsuo, A., Mitsuda, Y., Tokushige, C., Kashiwazaki, G., Taniguchi, J., Maeda, R., Noura, M., et al. (2017b). Genetic regulation of the RUNX transcription factor family has antitumor effects. J. Clin. Invest. 127, 2815-2828.   DOI
115 Mukouyama, Y., Chiba, N., Hara, T., Okada, H., Ito, Y., Kanamaru, R., Miyajima, A., Satake, M., and Watanabe, T. (2000). The AML1 transcription factor functions to develop and maintain hematogenic precursor cells in the embryonic aorta-gonad-mesonephros region. Dev. Biol. 220, 27-36.   DOI
116 Imai, Y., Kurokawa, M., Yamaguchi, Y., Izutsu, K., Nitta, E., Mitani, K., Satake, M., Noda, T., Ito, Y., and Hirai, H. (2004). The corepressor mSin3A regulates phosphorylation-induced activation, intranuclear location, and stability of AML1. Mol. Cell. Biol. 24, 1033-1043.   DOI
117 Islam, R., Yoon, W.J., Woo, K.M., Baek, J.H., and Ryoo, H.M. (2014). Pin1- mediated prolyl isomerization of Runx1 affects PU.1 expression in premonocytes. J. Cell. Physiol. 229, 443-452.   DOI
118 Ito, Y., Bae, S.C., and Chuang, L.S. (2015). The RUNX family: developmental regulators in cancer. Nat. Rev. Cancer 15, 81-95.   DOI
119 Jain, P., Nattakom, M., Holowka, D., Wang, D.H., Thomas Brenna, J., Ku, A.T., Nguyen, H., Ibrahim, S.F., and Tumbar, T. (2018). Runx1 role in epithelial and cancer cell proliferation implicates lipid metabolism and Scd1 and Soat1 activity. Stem Cells 36, 1603-1616.   DOI
120 Kadota, M., Yang, H.H., Gomez, B., Sato, M., Clifford, R.J., Meerzaman, D., Dunn, B.K., Wakefield, L.M., and Lee, M.P. (2010). Delineating genetic alterations for tumor progression in the MCF10A series of breast cancer cell lines. PLoS One 5, e9201.   DOI
121 Kamikubo, Y., Zhao, L., Wunderlich, M., Corpora, T., Hyde, R.K., Paul, T.A., Kundu, M., Garrett, L., Compton, S., Huang, G., et al. (2010). Accelerated leukemogenesis by truncated CBF beta-SMMHC defective in high-affinity binding with RUNX1. Cancer Cell 17, 455-468.   DOI
122 Ng, E.S., Azzola, L., Bruveris, F.F., Calvanese, V., Phipson, B., Vlahos, K., Hirst, C., Jokubaitis, V.J., Yu, Q.C., Maksimovic, J., et al. (2016). Differentiation of human embryonic stem cells to HOXA(+) hemogenic vasculature that resembles the aorta-gonad-mesonephros. Nat. Biotechnol. 34, 1168-1179.   DOI
123 Nagata, T., Gupta, V., Sorce, D., Kim, W.Y., Sali, A., Chait, B.T., Shigesada, K., Ito, Y., and Werner, M.H. (1999). Immunoglobulin motif DNA recognition and heterodimerization of the PEBP2/CBF Runt domain. Nat. Struct. Biol. 6, 615-619.   DOI
124 Navarro-Montero, O., Ayllon, V., Lamolda, M., Lopez-Onieva, L., Montes, R., Bueno, C., Ng, E., Guerrero-Carreno, X., Romero, T., Romero-Moya, D., et al. (2017). RUNX1c regulates hematopoietic differentiation of human pluripotent stem cells possibly in cooperation with proinflammatory signaling. Stem Cells 35, 2253-2266.   DOI
125 Neil, J.C., Gilroy, K., Borland, G., Hay, J., Terry, A., and Kilbey, A. (2017). The RUNX genes as conditional oncogenes: insights from retroviral targeting and mouse models. Adv. Exp. Med. Biol. 962, 247-264.   DOI
126 Nieke, S., Yasmin, N., Kakugawa, K., Yokomizo, T., Muroi, S., and Taniuchi, I. (2017). Unique N-terminal sequences in two Runx1 isoforms are dispensable for Runx1 function. BMC Dev. Biol. 17, 14.   DOI
127 Zhang, Y., Biggs, J.R., and Kraft, A.S. (2004). Phorbol ester treatment of K562 cells regulates the transcriptional activity of AML1c through phosphorylation. J. Biol. Chem. 279, 53116-53125.   DOI
128 Kanno, T., Kanno, Y., Chen, L.F., Ogawa, E., Kim, W.Y., and Ito, Y. (1998). Intrinsic transcriptional activation-inhibition domains of the polyomavirus enhancer binding protein 2/core binding factor alpha subunit revealed in the presence of the beta subunit. Mol. Cell. Biol. 18, 2444-2454.   DOI
129 Yoshimi, M., Goyama, S., Kawazu, M., Nakagawa, M., Ichikawa, M., Imai, Y., Kumano, K., Asai, T., Mulloy, J.C., Kraft, A.S., et al. (2012). Multiple phosphorylation sites are important for RUNX1 activity in early hematopoiesis and T-cell differentiation. Eur. J. Immunol. 42, 1044-1050.   DOI
130 Zeng, Y., He, J., Bai, Z., Li, Z., Gong, Y., Liu, C., Ni, Y., Du, J., Ma, C., Bian, L., et al. (2019). Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res. 29, 881-894.   DOI
131 Zhao, X., Jankovic, V., Gural, A., Huang, G., Pardanani, A., Menendez, S., Zhang, J., Dunne, R., Xiao, A., Erdjument-Bromage, H., et al. (2008). Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev. 22, 640-653.   DOI
132 Zhou, T., Luo, M., Cai, W., Zhou, S., Feng, D., Xu, C., and Wang, H. (2018). Runt-related transcription factor 1 (RUNX1) promotes TGF-beta-induced renal tubular epithelial-to-mesenchymal transition (EMT) and renal fibrosis through the PI3K subunit p110delta. EBioMedicine 31, 217-225.   DOI
133 Zovein, A.C., Hofmann, J.J., Lynch, M., French, W.J., Turlo, K.A., Yang, Y., Becker, M.S., Zanetta, L., Dejana, E., Gasson, J.C., et al. (2008). Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3, 625-636.   DOI
134 Kim, W., Barron, D.A., San Martin, R., Chan, K.S., Tran, L.L., Yang, F., Ressler, S.J., and Rowley, D.R. (2014). RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc. Natl. Acad. Sci. U. S. A. 111, 16389-16394.   DOI
135 Nik-Zainal, S., Davies, H., Staaf, J., Ramakrishna, M., Glodzik, D., Zou, X., Martincorena, I., Alexandrov, L.B., Martin, S., Wedge, D.C., et al. (2016). Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47-54.   DOI
136 Niki, M., Okada, H., Takano, H., Kuno, J., Tani, K., Hibino, H., Asano, S., Ito, Y., Satake, M., and Noda, T. (1997). Hematopoiesis in the fetal liver is impaired by targeted mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor, polyomavirus enhancer binding protein 2/core binding factor. Proc. Natl. Acad. Sci. U. S. A. 94, 5697-5702.   DOI
137 Karn, T., Pusztai, L., Holtrich, U., Iwamoto, T., Shiang, C.Y., Schmidt, M., Muller, V., Solbach, C., Gaetje, R., Hanker, L., et al. (2011). Homogeneous datasets of triple negative breast cancers enable the identification of novel prognostic and predictive signatures. PLoS One 6, e28403.   DOI
138 Kas, S.M., de Ruiter, J.R., Schipper, K., Annunziato, S., Schut, E., Klarenbeek, S., Drenth, A.P., van der Burg, E., Klijn, C., Ten Hoeve, J.J., et al. (2017). Insertional mutagenesis identifies drivers of a novel oncogenic pathway in invasive lobular breast carcinoma. Nat. Genet. 49, 1219-1230.   DOI
139 Keita, M., Bachvarova, M., Morin, C., Plante, M., Gregoire, J., Renaud, M.C., Sebastianelli, A., Trinh, X.B., and Bachvarov, D. (2013). The RUNX1 transcription factor is expressed in serous epithelial ovarian carcinoma and contributes to cell proliferation, migration and invasion. Cell Cycle 12, 972-986.   DOI
140 Komeno, Y., Yan, M., Matsuura, S., Lam, K., Lo, M.C., Huang, Y.J., Tenen, D.G., Downing, J.R., and Zhang, D.E. (2014). Runx1 exon 6-related alternative splicing isoforms differentially regulate hematopoiesis in mice. Blood 123, 3760-3769.   DOI
141 Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G., and Downing, J.R. (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321-330.   DOI
142 North, T., Gu, T.L., Stacy, T., Wang, Q., Howard, L., Binder, M., Marin-Padilla, M., and Speck, N.A. (1999). Cbfa2 is required for the formation of intraaortic hematopoietic clusters. Development 126, 2563-2575.   DOI
143 Ogawa, E., Inuzuka, M., Maruyama, M., Satake, M., Naito-Fujimoto, M., Ito, Y., and Shigesada, K. (1993a). Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology 194, 314-331.   DOI
144 Ogawa, E., Maruyama, M., Kagoshima, H., Inuzuka, M., Lu, J., Satake, M., Shigesada, K., and Ito, Y. (1993b). PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc. Natl. Acad. Sci. U. S. A. 90, 6859-6863.   DOI
145 Ottersbach, K. (2019). Endothelial-to-haematopoietic transition: an update on the process of making blood. Biochem. Soc. Trans. 47, 591-601.   DOI
146 Lee, S.E., Sada, A., Zhang, M., McDermitt, D.J., Lu, S.Y., Kemphues, K.J., and Tumbar, T. (2014). High Runx1 levels promote a reversible, moredifferentiated cell state in hair-follicle stem cells during quiescence. Cell Rep. 6, 499-513.   DOI
147 Kulkarni, M., Tan, T.Z., Syed Sulaiman, N.B., Lamar, J.M., Bansal, P., Cui, J., Qiao, Y., and Ito, Y. (2018). RUNX1 and RUNX3 protect against YAPmediated EMT, stem-ness and shorter survival outcomes in breast cancer. Oncotarget 9, 14175-14192.   DOI
148 Lacaud, G., Gore, L., Kennedy, M., Kouskoff, V., Kingsley, P., Hogan, C., Carlsson, L., Speck, N., Palis, J., and Keller, G. (2002). Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood 100, 458-466.   DOI
149 Lacaud, G., Kouskoff, V., Trumble, A., Schwantz, S., and Keller, G. (2004). Haploinsufficiency of Runx1 results in the acceleration of mesodermal development and hemangioblast specification upon in vitro differentiation of ES cells. Blood 103, 886-889.   DOI
150 Lancrin, C., Sroczynska, P., Stephenson, C., Allen, T., Kouskoff, V., and Lacaud, G. (2009). The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457, 892-895.   DOI
151 Leong, W.Y., Guo, H., Ma, O., Huang, H., Cantor, A.B., and Friedman, A.D. (2016). Runx1 phosphorylation by Src increases trans-activation via augmented stability, reduced histone deacetylase (HDAC) binding, and increased DNA affinity, and activated Runx1 favors granulopoiesis. J. Biol. Chem. 291, 826-836.   DOI
152 Levanon, D., Glusman, G., Bangsow, T., Ben-Asher, E., Male, D.A., Avidan, N., Bangsow, C., Hattori, M., Taylor, T.D., Taudien, S., et al. (2001). Architecture and anatomy of the genomic locus encoding the human leukemiaassociated transcription factor RUNX1/AML1. Gene 262, 23-33.   DOI
153 Levanon, D. and Groner, Y. (2004). Structure and regulated expression of mammalian RUNX genes. Oncogene 23, 4211-4219.   DOI
154 Levanon, D., Goldstein, R.E., Bernstein, Y., Tang, H., Goldenberg, D., Stifani, S., Paroush, Z., and Groner, Y. (1998). Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc. Natl. Acad. Sci. U. S. A. 95, 11590-11595.   DOI