Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.8.159

AMD3100 improves ovariectomy-induced osteoporosis in mice by facilitating mobilization of hematopoietic stem/progenitor cells  

Im, Jin Young (Stem Cell Neuroplasticity Research Group, Kyungpook National University)
Min, Woo-Kie (Department of Orthopaedic Surgery, Kyungpook National University Hospital)
Park, Min Hee (Stem Cell Neuroplasticity Research Group, Kyungpook National University)
Kim, NamOh (Stem Cell Neuroplasticity Research Group, Kyungpook National University)
Lee, Jong Kil (Stem Cell Neuroplasticity Research Group, Kyungpook National University)
Jin, Hee Kyung (Stem Cell Neuroplasticity Research Group, Kyungpook National University)
Choi, Je-Yong (Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University)
Kim, Shin-Yoon (Department of Orthopaedic Surgery, Kyungpook National University Hospital)
Bae, Jae-Sung (Stem Cell Neuroplasticity Research Group, Kyungpook National University)
Publication Information
BMB Reports / v.47, no.8, 2014 , pp. 439-444 More about this Journal
Abstract
Inhibition of an increase of osteoclasts has become the most important treatment for osteoporosis. The CXCR4 antagonist, AMD3100, plays an important role in the mobilization of osteoclast precursors within bone marrow (BM). However, the actual therapeutic impact of AMD3100 in osteoporosis has not yet been ascertained. Here we demonstrate the therapeutic effect of AMD3100 in the treatment of ovariectomy-induced osteoporosis in mice. We found that treatment with AMD3100 resulted in direct induction of release of SDF-1 from BM to blood and mobilization of hematopoietic stem/progenitor cells (HSPCs) in an osteoporosis model. AMD3100 prevented bone density loss after ovariectomy by mobilization of HSPCs, suggesting a therapeutic strategy to reduce the number of osteoclasts on bone surfaces. These findings support the hypothesis that treatment with AMD3100 can result in efficient mobilization of HSPCs into blood through direct blockade of the SDF-1/CXCR4 interaction in BM and can be considered as a potential new therapeutic intervention for osteoporosis.
Keywords
AMD3100; Hematopoietic stem/Progenitor cell; Mobilization; Osteoclast; Osteoporosis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dar, A., Schajnovitz, A., Lapid, K., Kalinkovich, A., Itkin, T., Ludin, A., Kao, W. M., Battista, M., Tesio, M., Kollet, O., Cohen, N. N., Margalit, R., Buss, E. C., Baleux, F., Oishi, S., Fujii, N., Larochelle, A., Dunbar, C. E., Broxmeyer, H. E., Frenette, P. S. and Lapidot, T. (2011) Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia 25, 1286-1296.   DOI   ScienceOn
2 Golan, K., Vagima, Y., Ludin, A., Itkin, T., Cohen-Gur, S., Kalinkovich, A., Kollet, O., Kim, C., Schajnovitz, A., Ovadya, Y., Lapid, K., Shivtiel, S., Morris, A. J., Ratajczak, M. Z. and Lapidot, T. (2012) S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 119, 2478-2488.   DOI   ScienceOn
3 Pusic, I. and DiPersio, J. F. (2010) Update on clinical experience with AMD3100, an SDF-1/CXCL12-CXCR4 inhibitor, in mobilization of hematopoietic stem and progenitor cells. Curr. Opin. Hematol. 17, 319-326.   DOI   ScienceOn
4 Kollet, O., Dar, A., Shivtiel, S., Kalinkovich, A., Lapid, K., Sztainberg, Y., Tesio, M., Samstein, R. M., Goichberg, P., Spiegel, A., Elson, A. and Lapidot, T. (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med. 12, 657-664.   DOI   ScienceOn
5 Paganessi, L. A., Walker, A. L., Tan, L. L., Holmes, I., Rich, E., Fung, H. C. and Christopherson, K. W., 2nd. (2011) Effective mobilization of hematopoietic progenitor cells in G-CSF mobilization defective CD26-/- mice through AMD3100-induced disruption of the CXCL12- CXCR4 axis. Exp. Hematol. 39, 384-390.   DOI   ScienceOn
6 Christopher, M. J. and Link, D. C. (2008) Granulocyte colony- stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J. Bone. Miner. Res. 23, 1765-1774.   DOI   ScienceOn
7 Nervi, B., Ramirez, P., Rettig, M. P., Uy, G. L., Holt, M. S., Ritchey, J. K., Prior, J. L., Piwnica-Worms, D., Bridger, G., Ley, T. J. and DiPersio, J. F. (2009) Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 113, 6206-6214.   DOI   ScienceOn
8 Rettig, M. P., Ansstas, G. and DiPersio, J. F. (2012) Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4. Leukemia 26, 34-53.   DOI   ScienceOn
9 Dale, D. C., Cottle, T. E., Fier, C. J., Bolyard, A. A., Bonilla, M. A., Boxer, L. A., Cham, B., Freedman, M. H., Kannourakis, G., Kinsey, S. E., Davis, R., Scarlata, D., Schwinzer, B., Zeidler, C. and Welte, K. (2003) Severe chronic neutropenia: treatment and follow-up of patients in the severe chronic neutropenia international registry. Am. J. Hematol. 72, 82-93.   DOI   ScienceOn
10 Lee, M. Y., Fukunaga, R., Lee, T. J., Lottsfeldt, J. L. and Nagata, S. (1991) Bone modulation in sustained hematopoietic stimulation in mice. Blood 77, 2135-2141.
11 Kim, T., Ha, H., Shim, K. S., Cho, W. K. and Ma, J. Y. (2013) The anti-osteoporotic effect of Yijung-tang in an ovariectomized rat model mediated by inhibition of osteoclast differentiation. J. Ethnopharmacol. 146, 83-89.   DOI   ScienceOn
12 Takayanagi, H. (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292-304.   DOI   ScienceOn
13 Usui, M., Yoshida, Y., Tsuji, K., Oikawa, K., Miyazono, K., Ishikawa, I., Yamamoto, T., Nifuji, A. and Noda, M. (2004) Tob deficiency superenhances osteoblastic activity after ovariectomy to block estrogen deficiency-induced osteoporosis. Proc. Natl. Acad. Sci. U S A. 101, 6653-6658.
14 Mansour, A., Abou-Ezzi, G., Sitnicka, E., Jacobsen, S. E., Wakkach, A. and Blin-Wakkach, C. (2012) Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J. Exp. Med. 209, 537-549.   DOI
15 van den Bergh, J. P., van Geel, T. A. and Geusens, P. P. (2012) Osteoporosis, frailty and fracture: implications for case finding and therapy. Nat. Rev. Rheumatol. 8, 163-172.   DOI
16 Ishii, M., Egen, J. G., Klauschen, F., Meier-Schellersheim, M., Saeki, Y., Vacher, J., Proia, R. L. and Germain, R. N. (2009) Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458, 524-528.   DOI   ScienceOn
17 M. Z., Lee, H., Wysoczynski, M., Wan, W., Marlicz, W., Laughlin, M. J., Kucia, M., Janowska-Wieczorek, A. and Ratajczak, J. (2010) Novel insight into stem cell mobilization- plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in pe ripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 24, 976-985.   DOI   ScienceOn
18 Winkler, I. G., Pettit, A. R., Raggatt, L. J., Jacobsen, R. N., Forristal, C. E., Barbier, V., Nowlan, B., Cisterne, A., Bendall, L. J., Sims, N. A. and Levesque, J. P. (2012) Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation. Leukemia 26, 1594-1601.   DOI   ScienceOn
19 De Klerck, B., Geboes, L., Hatse, S., Kelchtermans, H., Meyvis, Y., Vermeire, K., Bridger, G., Billiau, A., Schols, D. and Matthys, P. (2005) Pro-inflammatory properties of stromal cell-derived factor-1 (CXCL12) in collagen-induced arthritis. Arthritis. Res. Ther. 7, R1208-1220.   DOI   ScienceOn