• Title/Summary/Keyword: hellinger-reissner variational principle

Search Result 22, Processing Time 0.027 seconds

3-Node Relaxed-Equiribrium Hybrid-Mixed Curved Beam Elements (완화된 평형조건을 만족하는 응력함수를 가지는 3절점 혼합 곡선보요소)

  • Kim, Jin-Gon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.153-160
    • /
    • 2008
  • In this study, we propose a new three-node hybrid-mixed curved beam element with the relaxed-equiribrium stress functions for static analysis. The proposed element considering shear deformation is based on the Hellinger-Reissner variational principle. The stress functions are carefully chosen from three important considerations: (i) all the kinematic deformation modes must be suppressed, and (ii) the spurious constraints must be removed in the limiting behaviors via the field-consistency, and (iii) the relaxed equilibrium conditions could be incorporated because it might be impossible to select the stress functions and parameters to fully satisfy both the equiribrium conditions and the suppression of kinematic deformation modes in the three-node curved beam hybrid-mixed formulation. Numerical examples confirm the superior and stable behavior of the proposed element regardless of slenderness ratio and curvature. Besides, the proposed element shows the outstanding performance in predicting the stress resultant distributions.

An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.199-215
    • /
    • 2005
  • An assumed stress quadrilateral thin/moderately thick plate element HQP4 based on the Mindlin/Reissner plate theory is proposed. The formulation is based on Hellinger-Reissner variational principle. Static and free vibration analyses of plates are carried out. Numerical examples are presented to show that the validity and efficiency of the present element for static and free vibration analysis of plates. Satisfactory accuracy for thin and moderately thick plates is obtained and it is free from shear locking for thin plate analysis.

Influence of aspect ratio and fibre orientation on the stability of simply supported orthotropic skew plates

  • Kutlu, Darilmaz
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.359-374
    • /
    • 2011
  • In this paper, the influence of fibre orientation and aspect ratio on stability analysis of simply supported skew plates subjected to in plane loading is studied by using a four noded hybrid plate finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Some numerical problems are solved and the effects of skew angle, aspect ratio, fibre orientation and loading type on the critical buckling loads are highlighted.

A hybrid 8-node hexahedral element for static and free vibration analysis

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.571-590
    • /
    • 2005
  • An 8 node assumed stress hexahedral element with rotational degrees of freedom is proposed for static and free vibration analyses. The element formulation is based directly on an 8-node element. This direct formulation requires fewer computations than a similar element that is derived from an internal 20-node element in which the midside degrees of freedom are eliminated by expressing them in terms of displacements and rotations at corner nodes. The formulation is based on Hellinger-Reissner variational principle. Numerical examples are presented to show the validity and efficiency of the present element for static and free vibration analysis.

Dynamic behaviour of orthotropic elliptic paraboloid shells with openings

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.225-235
    • /
    • 2017
  • In this paper a vibration study on orthotropic elliptic paraboloid shells with openings is carried out by using a hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Natural frequencies of orthotropic elliptic paraboloid shells with and without openings are presented. The influence of aspect ratio, height ratio, opening ratio and material angle on the frequencies and mode shapes are investigated.

Static and free vibration behaviour of orthotropic elliptic paraboloid shells

  • Darilmaz, Kutlu
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.737-746
    • /
    • 2017
  • In this paper the influence of aspect ratio, height ratio and material angle on static and free vibration behaviour of orthotropic elliptic paraboloid shells is studied by using a four-node hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. A parametric study is carried out for static and free vibration response of orthotropic elliptic paraboloid shells with respect to displacements, internal forces, fundamental frequencies and mode shapes by varying the aspect and height ratios, and material angle.

In-Plane Flexural Vibration Analysis of Arches Using Three-Noded Hybrid-Mixed Element (3절점 혼합유한요소를 이용한 아치의 면내굽힘진동해석)

  • Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.83-89
    • /
    • 2006
  • Curved beams are more efficient in transfer of loads than straight beams because the transfer is effected by bending, shear and membrane action. The finite element method is a versatile method for solving structural mechanics problems and curved beam problems have been solved using this method by many author. In this study, a new three-noded hybrid-mixed curved beam element is proposed to investigate the in-plane flexural vibration behavior of arches depending on the curvature, aspect ratio and boundary conditions, etc. The proposed element including the effect of shear deformation is based on the Hellinger-Reissner variational principle, and employs the quadratic displacement functions and consistent linear stress functions. The stress parameters are then eliminated from the stationary condition of the variational principle so that the standard stiffness equations are obtained. Several numerical examples confirm the accuracy of the proposed finite element and also show the dynamic behavior of arches with various shapes.

  • PDF

The Development of Incompatible Finite Elements for Plane Stress/Strain Using Multivariable Variational formulation (다변수 변분해법에 의한 비적합 4절점 사각형 평면응력 및 평면변형률 요소의 개발)

  • 주상백;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2871-2882
    • /
    • 1994
  • Two kinds of 4-node plane stress/strain finite elements are presented in this work. They are derived from the modified Hellinger-Reissner variational principle so as to employ the internal incompatible displacement and independent stress fields, or the incompatible displacement and strain fields. The introduced incompatible functions are selected to satisfy the constant strain condition. The elements are evaluated on several problems of bending and material incompressibility with regular and distorted elements. The results show that the new elements perform excellently in the calculation of deformation and stresses.

Incompatible Three-Dimensional Hexagonal Finite Elements by Multivariable Method (다변수 변분해법에 의한 비적합 8절점 육면체 요소)

  • Ju, Sang-Baek;Sin, Hyo-Chol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2078-2086
    • /
    • 1996
  • This paper introduces two three-dimensional eight-node hexagonal elements obtained by using multivariable variational mehtod. Both of them are based on the modified hellinger-reissner principle to employ incompatible displacements and assumed stresses of assumed strains. The internal functions of element are introduced to as element formulation through two different methods : the first one uses the functions determined directly from the element boundary condition of the incompatible displacements ; while the second, being a kind of B-bar mehtod, employs the modification technique of strain-displacement matrix to pass the patch test. The elements are evaluated on the selective problems of bending and material incompressibility with regular and distorted meshes. The results show that the new elements perform with good accuracy in both of deformation and stress calculation and they are insensitive to distorted geometry of element.

Local Response Recovery for Multilayered Composite Panels using Mesh Superposition (유한요소격자중첩을 이용한 복합재료평판의 변위 및 응력의 복원)

  • 박진우;김용협
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.89-92
    • /
    • 2000
  • In this paper, an effective procedure is presented for the local recovery of displacements and stresses in multilayered composite panels, which incorporate the local refinement using mesh superposition. The mesh superposition method is used to refine the global coarse mesh by superimposing refined mesh to the localized zone of interest without transition zones. The finite element model used is a solid element based on the Hellinger-Reissner variational principle. The a posteriori computation of the through-the-thickness distributions of displacements and stresses is achieved using a predictor-corrector procedure. The procedure utilizes the superconvergent stresses and nodal displacements of the finite element patch. The element patch is generated by locally superimposing a refined local mesh to the coarse global mesh.

  • PDF