Browse > Article
http://dx.doi.org/10.12989/sem.2017.63.2.225

Dynamic behaviour of orthotropic elliptic paraboloid shells with openings  

Darilmaz, Kutlu (Department of Civil Engineering, Istanbul Technical University)
Publication Information
Structural Engineering and Mechanics / v.63, no.2, 2017 , pp. 225-235 More about this Journal
Abstract
In this paper a vibration study on orthotropic elliptic paraboloid shells with openings is carried out by using a hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Natural frequencies of orthotropic elliptic paraboloid shells with and without openings are presented. The influence of aspect ratio, height ratio, opening ratio and material angle on the frequencies and mode shapes are investigated.
Keywords
elliptic paraboloid shell; shell; opening; assumed stress hybrid element; finite element; free vibration;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Ibrahimbegovic, A., Taylor, R.L. and Wilson, E.L. (1990), "A robust quadrilateral membrane finite element with drilling degrees of freedom", Int. J. Numer. Meth. Eng., 30(3), 445-457.   DOI
2 Javed, S., Viswanathan, K.K., Aziz, Z.A. and Lee, J.H. (2016), "Vibration analysis of a shear deformed anti-symmetric angleply conical shells with varying sinusoidal thickness", Struct. Eng. Mech., 58(6), 1001-1020.   DOI
3 Jullien, J.F. and Limam, A. (1998), "Effects of openings of the buckling of cylindrical shells subjected to axial compression", Thin Wall. Struct., 31, 187-202   DOI
4 Kang, J.H. (2014), "Free vibrations of combined hemisphericalcylindrical shells of revolution with a top opening", Int. J. Struct. Stab. Dyn., 14(1), 1350023.   DOI
5 Kang, J.H. (2015), "Vibration analysis of shallow or deep, complete parabolic shells with variable thickness", KSCE J. Civil Eng., 19(7), 2172-2178.   DOI
6 MacNeal, R.H. and Harder, R.L. (1988), "A refined four-noded membrane element with rotational degrees of freedom", Comput. Struct., 28, 75-84.   DOI
7 Mohraz, B. and Schnobrich, W.C. (1966), "The analysis of shallow shell structures by a discrete element system", Civil Engineering Studies, Structural Research Series No: 304.
8 Nicholas, P.E., Padmanaban, K.P. and Vasudevan, D. (2014), "Buckling optimization of laminated composite plate with elliptical cutout using ANN and GA", Struct. Eng. Mech., 52(4), 815-827.   DOI
9 Pian, T.H.H. (1964), "Derivation of element stiffness matrices by assumed stress distributions", AIAA J., 12, 1333-1336.
10 Pian, T.H.H. and Chen, D.P. (1983), "On the suppression of zero energy deformation modes", Int. J. Numer. Meth. Eng., 19, 1741-1752.   DOI
11 Punch, E.F. and Atluri, S.N. (1984), "Development and testing of stable, isoparametric curvilinear 2 and 3-D hybrid stress elements", Comput. Meth. Appl. Mech. Eng., 47, 331-356.   DOI
12 Shariati, M. and Rokhi, MM, (2010), "Buckling of steel cylindrical shells with an elliptical cutout", Int. J. Steel Struct., 10(2), 193-205.   DOI
13 Rajanna, T., Banerjee, S., Desai, Y.M. and Prabhakara, D.L. (2016), "Vibration and buckling analyses of laminated panels with and without cutouts under compressive and tensile edge loads", Steel Compos. Struct., 21(1), 37-55.   DOI
14 Singh, S.B. and Kumar, D. (2010), "Cutout shape and size effects on response of quasi-isotropic composite laminate under uniaxial compression", Struct. Eng. Mech., 35(3), 335-348.   DOI
15 Torabi, H. and Shariati, M. (2014), "Buckling analysis of steel semi-spherical shells with square cutout under axial compression", Streng. Mater., 46(4), 531-542.   DOI
16 Xie, X., Zheng, H. and Jin, G. (2015), "Free vibration of fourparameter functionally graded spherical and parabolic shells of revolution with arbitrary boundary conditions", Compos. Part B: Eng., 77, 59-73.   DOI
17 Yunus, S.M., Saigal, S. and Cook, R.D. (1989), "On improved hybrid finite elements with rotational degrees of freedom", Int. J. Numer. Meth. Eng., 28(4), 785-800.   DOI
18 Aass, A. (1963), "A contribution to the bending theory of elliptic paraboloid shells", IABSE, 23.
19 Allman, D.J. (1984), "A compatible triangular element including vertex rotations for plane elasticity problems", Comput. Struct., 19, 1-8.   DOI
20 Bergan, P.G. and Felippa, C.A. (1985), "A triangular membrane element with rotational degrees of freedom", Comput. Meth. Appl. Mech. Eng., 50, 25-69.   DOI
21 Darilmaz, K. and Kumbasar, N. (2006), "An 8-node assumed stress hybrid element for analysis of shells", Comput. Struct., 84, 1990-2000.   DOI
22 Choi, C.K. and Lee, W.H. (1996), "Versatile variable-node flatshell element", J. Eng. Mech., 122(5), 432-441.   DOI
23 Chun, K.S., Kassegne, S.K. and Wondimu, B.K. (2009), "Hybrid/mixed assumed stress element for anisotropic laminated elliptical and parabolic shells", Finite Elem. Anal. Des., 45(11), 766-781.   DOI
24 Cook, R.D. (1986), "On the Allman triangle and a related quadrilateral element", Comput. Struct., 22, 1065-1067.   DOI
25 Chernobryvko, M.V., Avramov, K.V., Romanenko, V.N., Batutina, T.J. and Tonkonogenko, A.M. (2014), "Free linear vibrations of thin axisymmetric parabolic shells", Meccanica, 49(12), 2839-2845.   DOI
26 Darilmaz, K. (2005), "An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates", Struct. Eng. Mech., 19(2), 199-215.   DOI
27 Darilmaz, K. (2007), "An assumed-stress hybrid element for static and free vibration analysis of folded plates", Struct. Eng. Mech., 25(4), 405-421.   DOI
28 Feng, W., Hoa, S.V. and Huang, Q. (1997), "Classification of stress modes in assumed stress fields of hybrid finite elements", Int. J. Num. Meth. Eng., 40(23), 4313-4339.   DOI
29 Darilmaz, K. (2012), "Stiffened orthotropic corner supported hypar shells: Effect of stiffener location, rise/span ratio and fiber orientaton on vibration behavior", Steel Compos. Struct., 12(4), 275-289.   DOI
30 Darilmaz, K. (2017), "Static and free vibration behaviour of orthotropic elliptic paraboloid shells", Steel Compos. Struct., 23(6), 737-746.   DOI
31 Ghazijahani, T.G., Jiao, H. and Holloway, D. (2014), "Influence of a cutout on circular steel hollow sections under cyclic loading", J. Constr. Steel Res., 100, 12-20.   DOI
32 Ghazijahani, T.G., Jiao, H. and Holloway, D. (2015), "Structural behavior of shells with different cutouts under compression: An experimental study", J. Constr. Steel Res., 105, 129-137.   DOI
33 Cook, R.D., Malkus D.S. and Plesha, M.E. (2001), Concepts and Applications of Finite Element Analysis, 4th Edition, Wiley.