Browse > Article
http://dx.doi.org/10.12989/sem.2005.21.5.571

A hybrid 8-node hexahedral element for static and free vibration analysis  

Darilmaz, Kutlu (Department of Civil Engineering, Istanbul Technical University)
Publication Information
Structural Engineering and Mechanics / v.21, no.5, 2005 , pp. 571-590 More about this Journal
Abstract
An 8 node assumed stress hexahedral element with rotational degrees of freedom is proposed for static and free vibration analyses. The element formulation is based directly on an 8-node element. This direct formulation requires fewer computations than a similar element that is derived from an internal 20-node element in which the midside degrees of freedom are eliminated by expressing them in terms of displacements and rotations at corner nodes. The formulation is based on Hellinger-Reissner variational principle. Numerical examples are presented to show the validity and efficiency of the present element for static and free vibration analysis.
Keywords
solid element; 8-node hexahedral element; hybrid finite element; static analysis; free vibration;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 ANSYS, Swanson Analysis Systems, Swanson J., ANSYS 5.4. USA
2 Cao, Y.P., Hu, N., Lu, J., Fukunaga, H. and Yao, Z.H. (2002), 'A 3D brick element based on Hu-Washizu variational principle for mesh distortion', Int. J. Num. Meth. Eng., 53, 2529-2548   DOI   ScienceOn
3 Chandra, S. and Prathap, G (1989), 'A field-consistent formulation for the 8-noded solid finite element', Comp. Struct., 33, 345-355   DOI   ScienceOn
4 Chen, Y.I. and Wu, GY. (2004), 'A mixed 8-node hexahedral element based on the Hu-Washizu principle and the field extrapolation technique', Struct. Eng. Mech., 17(1), 113-140   DOI   ScienceOn
5 Chen, W.J. and Cheung, Y.K. (1992), 'Three-dimensional 8-node and 20-node refined hybrid isoparametric elements', Int. J. Num. Meth. Eng., 35, 1871-1889   DOI
6 Choi, C.K. and Chung, K.Y. (1996), 'Three dimensional non-conforming 8-node solid elements with rotational degrees of freedom', Struct. Eng. Meek, 4(5), 569-586   DOI   ScienceOn
7 Choi, C.K. and Lee, N.H. (1993), 'Three dimensional transition solid elements for adaptive mesh gradation', Struct. Eng. Mech., 1(1), 61-74   DOI   ScienceOn
8 Darilmaz, K. (2005), 'An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates', Struct. Eng. Meek, 19(2), 199-215
9 Feng, W., Hoa, S.V. and Huang, Q. (1997), 'Classification of stress modes in assumed stress fields of hybrid finite elements', Int. J. Num. Meth. Eng., 40, 4313-4339   DOI
10 MacNeal, R.H. and Harder, R.L. (1985), 'A proposed standard set of problems to test finite element accuracy', Finite Elem. Anal. Des., 1, 3-20   DOI   ScienceOn
11 MacNeal, R.H. and Harder, R.L. (1988), 'A refined four-noded membrane element with rotational degrees of freedom', Comp. Struct., 28, 75-84   DOI   ScienceOn
12 Leissa, A.W. (1969), Vibration of Plates, Scientific and Technical Information Division, NASA, Washington, DC
13 Leissa, A.W. and Narita, Y (1980), 'Natural frequencies of simply supported circular plates', J. Sound Vib., 70(2), 221-229   DOI   ScienceOn
14 Ooi, E.T., Rajendran, S. and Yeo, J.H. (2004), 'A 20-node hexahedron element with enhanced distortion tolerance', Int. J. Numer. Meth. Engng, 60(15), 2501-2530   DOI   ScienceOn
15 Pian, T.H.H. (1964), 'Derivation of element stiffness matrices by assumed stress distributions', AIAA J., 2, 1333- 1336   DOI
16 Pian, T.H.H. and Chen, D.P. (1983), 'On the suppression of zero energy deformation modes', Int. J. Num. Meth. Eng., 19, 1741-1752   DOI   ScienceOn
17 Pian, T.H.H. and Sumihara, K. (1984), 'Rational approach for assumed stress finite elements', Int. J. Numer. Meth. Engng., 20, 1685-1695   DOI   ScienceOn
18 Pian, T.H.H. and Tong, P. (1986), 'Relations between incompatible model and hybrid stress model', Int. J. Num. Meth. Eng., 22, 173-181   DOI   ScienceOn
19 Punch, E.F. and Atluri, S.N. (1984), 'Development and testing of stable, isoparametric curvilinear 2 and 3-D hybrid stress elements', Comput. Meth. Appl. Mech. Eng., 47, 331-356   DOI   ScienceOn
20 Rajendran, S. and Prathap, G (1999), 'Eight-node field-consistent hexahedron element in dynamic problems', Struct. Eng. Meek, 8(1), 19-26   DOI   ScienceOn
21 Sze, K.Y. and Ghali, A. (1993), 'Hybrid hexahedral element for solids, plates, shells and beams by selective scaling', Int. J. Num. Meth. Eng., 36, 1519-1540   DOI   ScienceOn
22 Sze, K.Y. and Lo, S.H. (1999), 'A 12-node hybrid stress brick element for beam/column analysis', Eng. Comp., 16(6-7), 752-766   DOI   ScienceOn
23 Sze, K.Y. and Yao, L.Q. (2000), 'A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part I-solid-shell element formulation', Int. J. Numer. Meth. Engng., 48, 545-564   DOI
24 Timoshenko, S. and Goodier, J.N. (1951), Theory of Elasticity, Mc-Graw Hill, New York
25 Timoshenko, S., Young, D.H. and Weaver Jr. W (1974), Vibration Problems in Engineering, 4th. ed., John Wiley & Sons, New York
26 Yeo, S.T. and Lee, B.C. (1997), 'New stress assumption for hybrid stress elements and refined four-node plane and eight-node brick elements', Int. J. Num. Meth. Eng., 40, 2933-2952   DOI
27 Yunus, S.M., Saigal, S. and Cook, R.D. (1989), 'On improved hybrid finite elements with rotational degrees of freedom', Int. J. Num. Meth. Eng., 28, 785-800   DOI   ScienceOn
28 Yunus, S.M., Pawlak, T.P. and Cook, R.D. (1991), 'Solid elements with rotational degrees of freedom: Part 1- hexahedral elements', Int. J. Num. Meth. Eng, 31, 573-592   DOI
29 Ibrahimbegovic, A. and Wilson, E.L. (1991), 'Thick shell and solid finite elements with independent rotation fields', Int. J. Num. Meth. Eng, 31, 1393-1414   DOI
30 Sze, K.Y, Soh, A.K. and Sim, YS. (1996), 'Solid elements with rotational DOFs by explicit hybrid stabilization', Int. J. Num. Meth. Eng, 39, 2987-3005   DOI
31 Sze, K.Y. and Pan, Y.S. (2000), 'Hybrid stress tetrahedral elements with Allman's rotational D.O.F.s', Int. J. Num. Meth. Eng, 48, 1055-1070   DOI
32 Choi, C.K., Chung, K.Y. and Lee, E.J. (2001), 'Mixed formulated 13-node hexahedral elements with rotational degrees of freedom: MR-H13 elements', Struct. Eng. Mech., 11(1), 105-122   DOI   ScienceOn