• Title/Summary/Keyword: helicoidal surface

Search Result 9, Processing Time 0.023 seconds

HELICOIDAL SURFACES AND THEIR GAUSS MAP IN MINKOWSKI 3-SPACE

  • Choi, Mie-Kyung;Kim, Young-Ho;Liu, Huili;Yoon, Dae-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.859-881
    • /
    • 2010
  • The helicoidal surface is a generalization of rotation surface in a Minkowski space. We study helicoidal surfaces in a Minkowski 3-space in terms of their Gauss map and provide some examples of new classes of helicoidal surfaces with constant mean curvature in a Minkowski 3-space.

HELICOIDAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP

  • Choi, Mie-Kyung;Kim, Dong-Soo;Kim, Young-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.215-223
    • /
    • 2009
  • The helicoidal surfaces with pointwise 1-type or harmonic gauss map in Euclidean 3-space are studied. The notion of pointwise 1-type Gauss map is a generalization of usual sense of 1-type Gauss map. In particular, we prove that an ordinary helicoid is the only genuine helicoidal surface of polynomial kind with pointwise 1-type Gauss map of the first kind and a right cone is the only rational helicoidal surface with pointwise 1-type Gauss map of the second kind. Also, we give a characterization of rational helicoidal surface with harmonic or pointwise 1-type Gauss map.

BOUR'S THEOREM IN 4-DIMENSIONAL EUCLIDEAN SPACE

  • Hieu, Doan The;Thang, Nguyen Ngoc
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2081-2089
    • /
    • 2017
  • In this paper we generalize 3-dimensional Bour's Theorem to the case of 4-dimension. We proved that a helicoidal surface in $\mathbb{R}^4$ is isometric to a family of surfaces of revolution in $\mathbb{R}^4$ in such a way that helices on the helicoidal surface correspond to parallel circles on the surfaces of revolution. Moreover, if the surfaces are required further to have the same Gauss map, then they are hyperplanar and minimal. Parametrizations for such minimal surfaces are given explicitly.

HELICOIDAL SURFACES OF THE THIRD FUNDAMENTAL FORM IN MINKOWSKI 3-SPACE

  • CHOI, MIEKYUNG;YOON, DAE WON
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1569-1578
    • /
    • 2015
  • We study helicoidal surfaces with the non-degenerate third fundamental form in Minkowski 3-space. In particular, we mainly focus on the study of helicoidal surfaces with light-like axis in Minkowski 3-space. As a result, we classify helicoidal surfaces satisfying an equation in terms of the position vector field and the Laplace operator with respect to the third fundamental form on the surface.

CLASSIFICATIONS OF HELICOIDAL SURFACES WITH L1-POINTWISE 1-TYPE GAUSS MAP

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1345-1356
    • /
    • 2013
  • In this paper, we study rotational and helicoidal surfaces in Euclidean 3-space in terms of their Gauss map. We obtain a complete classification of these type of surfaces whose Gauss maps G satisfy $L_1G=f(G+C)$ for some constant vector $C{\in}\mathbb{E}^3$ and smooth function $f$, where $L_1$ denotes the Cheng-Yau operator.

HELICOIDAL MINIMAL SURFACES IN A CONFORMALLY FLAT 3-SPACE

  • Araujo, Kellcio Oliveira;Cui, Ningwei;Pina, Romildo da Silva
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.531-540
    • /
    • 2016
  • In this work, we introduce the complete Riemannian manifold $\mathbb{F}_3$ which is a three-dimensional real vector space endowed with a conformally flat metric that is a solution of the Einstein equation. We obtain a second order nonlinear ordinary differential equation that characterizes the helicoidal minimal surfaces in $\mathbb{F}_3$. We show that the helicoid is a complete minimal surface in $\mathbb{F}_3$. Moreover we obtain a local solution of this differential equation which is a two-parameter family of functions ${\lambda}_h,K_2$ explicitly given by an integral and defined on an open interval. Consequently, we show that the helicoidal motion applied on the curve defined from ${\lambda}_h,K_2$ gives a two-parameter family of helicoidal minimal surfaces in $\mathbb{F}_3$.

A Study on the Mechanical Behavior of Biomimetic Fiber-Reinforced Composites under Pressure Loads (압력하중 하에서 생체모방 섬유강화 복합재의 기계적 거동 연구)

  • Lee, Jinho;Jo, Hyun-Seok;Kim, Myungsoo
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.50-55
    • /
    • 2019
  • In this study, we investigated the effect of fiber alignment in helicoidal structure on the mechanical properties of biomimetic fiber-reinforced composites. Using finite element analysis, circular biomimetic fiber composites were designed and studied. Various amounts of pressure loads were applied to a surface of the composites, and then bending and failure behaviors of the composites were analyzed. The results showed various failure morphologies according to the orientation of the fibers, and it turned out that the fiber alignment in helicoidal structure significantly improved the bending strength of the composite under pressure loading. This was because the fiber alignment in various directions for each layer dispersed effectively the fracture energy from the external load into multiple directions.

The Design of Cutter profiles for Manufacturing Rotors of Screw Compressor (스크류 로터 가공용 커터의 치형설계에 관한 연구)

  • Park, S.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.109-118
    • /
    • 1997
  • The purpose of this paper is to design cutter profiles for manufacturing rotors of screw compressor, which are based on universal milling machine. The surface profile of screw rotor which is helicoidal is derived as brief equation through the coordinates transformation of the section perpendicular to rotor axis. And the equations of contact lines between a cutter and the surface profile of screw rotor are derived. The computer program which can analyze the equation of contact lines numerically and design the cutter profiles of screw rotor is made, and verified through measuring screw rotors which are menufactured as the designed cutter by the computer program.

  • PDF

Unsteady RANS computations of turbulent flow in a high-amplitude meandering channel (고진폭 만곡수로에서 난류흐름의 비정상 RANS 수치모의)

  • Lee, Seungkyu;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.2
    • /
    • pp.89-97
    • /
    • 2017
  • Turbulent flow structure in the high amplitude meandering channel is complex due to secondary recirculation with helicoidal motions and shear layers formed by flow separation from the curved sidewall. In this work, the secondary flow and the superelevation of the water surface produced in the high-amplitude Kinoshita channel are reproduced by the unsteady Reynolds-averaged Navier-Stokes (RANS) computations using the VOF technique for resolving the variation of water surface elevation and three statistical turbulence models ($k-{\varepsilon}$, RNG $k-{\varepsilon}$, $k-{\omega}$ SST). The numerical results computed by a second-order accurate finite volume method are compared with an existing experimental measurement. Among applied turbulence models, $k-{\omega}$ SST model relatively well predicts overall distribution of the secondary recirculation in the Kinoshita channel, while all three models yield similar prediction of water superelevation transverse slope. The secondary recirculation driven by the radial acceleration in the upstream bend affects the flow structure in the downstream bend, which yields a pair of counter-rotating vortices at the bend apex. This complex flow pattern is reasonably well reproduced by the $k-{\omega}$ SST model. Both $k-{\varepsilon}$ based models fail to predict the clockwise-rotating vortex between a pair of counter-rotating vortices which was observed in the experiment. Regardless of applied turbulence models, the present computations using the VOF method appear to well reproduce the superelevation of water surface through the meandering channel.