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HELICOIDAL SURFACES OF THE THIRD FUNDAMENTAL

FORM IN MINKOWSKI 3-SPACE

Miekyung Choi and Dae Won Yoon

Abstract. We study helicoidal surfaces with the non-degenerate third
fundamental form in Minkowski 3-space. In particular, we mainly focus
on the study of helicoidal surfaces with light-like axis in Minkowski 3-
space. As a result, we classify helicoidal surfaces satisfying an equation
in terms of the position vector field and the Laplace operator with respect
to the third fundamental form on the surface.

1. Introduction

We study a (pseudo-)Riemannian manifold as a submanifold of a (pseudo-
)Euclidean space via an isometric immersion by Nash’s Theorem. Let x :
M → E

3 be an isometric immersion of a connected surface M in a Euclidean
3-space E

3. Denote by ∆ the Laplacian with respect to the induced metric on
M . Takahashi ([11]) proved that minimal surfaces and spheres are the only
surfaces in E

3 satisfying the condition ∆x = λx, λ ∈ R. As a generalization of
Takahashi’s Theorem, Garay ([4]) classified the hypersurfaces whose coordinate
functions in E

m are eigenfunctions of their Laplacian, that is, the hypersurfaces
in E

m satisfies the condition

∆x = Ax, A ∈ Mat(m,R),

where Mat(m,R) is the set of m×m-real matrices.
On the other hand, if we suppose a hypersurface M has no parabolic points,

the second fundamental form can be regarded as a new (pseudo-)Riemannian
metric on M. Kaimakamis and Papantoniou ([5]) studied surfaces of revolution
with non-lightlike axis in Minkowski 3-space satisfying the condition with B = 0

(1.1) ∆IIx = Ax+B, A ∈ Mat(3,R), B ∈ R
3,
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where ∆II is the Laplacian with respect to the non-degenerate second fun-
damental form II. Based on the study of Kaimakamis and Papantoniou, the
present authors and Kim ([3]) completely classified surfaces of revolution in
Minkowski 3-space satisfying the condition (1.1) with non-zero vector B.

We also deal with the non-degenerate third fundamental form as a new
(pseudo-)Riemannian metric on a (pseudo-)Riemannian submanifold in (pseu-
do-)Euclidean space. In fact, the third fundamental form III is expressed in
terms of the first fundamental form I and the second fundamental form II,
that is, III = 2HII +KI, where H is the mean curvature and K the Gauss-
ian curvature. In that sense, Kaimakamis and Papantoniou ([6]) researched
surfaces of revolution in Minkowski 3-space satisfying the condition

(1.2) ∆IIIx = Ax, A ∈ Mat(3,R),

where ∆III is the Laplacian with respect to the non-degenerate third funda-
mental form III. In [8], Lee, Kim and Yoon studied ruled surfaces of the non-
degenerate third fundamental form in Minkowski 3-space. Recently, Senoussi
and Bekkar ([10]) investigated helicoidal surfaces with non-lightlike axis in
Minkowski 3-space satisfying the condition (1.2).

As is well-known, a helicoidal surface is a kind of generalization of surfaces
of revolution and ruled surfaces in (pseudo-)Euclidean space. Based on these
backgrounds, it is worth studying helicoidal surfaces with the non-degenerate
third fundamental form.

In this paper, we study helicoidal surfaces with light-like axis in Minkowski
3-space satisfying the condition (1.2). As a result, we are to complete Senoussi
and Bekkar’s classification of helicoidal surfaces in Minkowski 3-space satisfying
the condition (1.2).

2. Preliminaries

Let E3
1 be a Minkowski 3-space with the Lorentz metric

〈·, ·〉 = −dx0
2 + dx1

2 + dx2
2,

where (x0, x1, x2) is a system of the canonical coordinates in R
3. Let M be a

2-dimensional connected surface in E
3
1 and x : M → E

3
1 a smooth isometric

immersion defined by x(u, v) = (x0(u, v), x1(u, v), x2(u, v)). For a surface M,

we denote N the standard unit normal vector field on M. The first fundamental
form I of a surface M is given by

I = g11du
2 + 2g12dudv + g22dv

2,

where g11 = 〈xu, xu〉, g12 = 〈xu, xv〉, g22 = 〈xv, xv〉. And the second fun-
damental form II and the third fundamental form III of M are defined by,
respectively,

II = h11du
2 + 2h12dudv + h22dv

2,

III = t11du
2 + 2t12dudv + t22dv

2,
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where

h11 = 〈xuu, N〉, h12 = 〈xuv , N〉, h22 = 〈xvv , N〉,

t11 = 〈Nu, Nu〉, t12 = 〈Nu, Nv〉, t22 = 〈Nv, Nv〉.

If the third fundamental form III is non-degenerate, then it can be regarded
as a (pseudo-)Riemannian metric and the Laplacian ∆III with respect to III

can be defined formally on the (pseudo-)Riemannian manifold M by (cf. [9])

∆III = −
1

√

| T |

∑

i,j

∂

∂xi

(

√

| T | tij
∂

∂xj

)

,

where tij are the components of III, T = det(tij) and (tij) = (tij)
−1.

On the other hand, a helicoidal surface M with axis of revolution l and pitch
h in E

3
1 is a non-degenerate surface which is invariant under the action of the

helicoidal motion. If a pitch h of M is zero, then it coincides with surfaces of
revolution. In particular, it is called the genuine helicoidal surface provided h

is non-zero ([1]).
Let γ : I = (a, b) ⊂ R → Π be a plane curve in E

3
1 and l a straight line in Π

which does not intersect curve γ. In general, we have three types of helicoidal
surfaces depending on the axis of revolution being space-like, time-like and
light-like.

Case 1. The axis of revolution l is space-like.

In this case, l is transformed to the x1-axis or x2-axis by the Lorentz trans-
formation. So we may consider x2-axis as an axis of revolution. Then without
loss of generality we may assume that the profile curve γ lies in the x1x2-plane
or x0x2-plane. Hence, the curve γ can be represented by

γ(u) = (0, f(u), g(u)) or γ(u) = (f(u), 0, g(u))

for smooth functions f and g on an open interval I = (a, b). Therefore, the
surface M may be parameterized by

x(u, v) = (f(u) sinh v, f(u) coshv, g(u) + hv), f(u) > 0, h ∈ R

or

x(u, v) = (f(u) cosh v, f(u) sinh v, g(u) + hv), f(u) > 0, h ∈ R.

Case 2. The axis of revolution l is time-like.

If the axis of revolution l is time-like, then l is transformed to the x0-axis
by the Lorentz transformation. We may assume that the profile curve γ lies in
the x0x1-plane. So the curve γ is given by γ(u) = (g(u), f(u), 0) for a positive
function f = f(u) on an open interval I = (a, b). Hence, the surface M can be
expressed by

x(u, v) = (g(u) + hv, f(u) cos v, f(u) sin v), f(u) > 0, h ∈ R.

Case 3. The axis of revolution l is light-like.
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In this case, we may assume that the axis of revolution l is the line spanned
by the vector (1, 1, 0). And we assume that the profile curve γ lies in the x0x1-
plane of the form γ(u) = (f(u), g(u), 0), where f = f(u) is a positive function
and g = g(u) is a function satisfying p(u) = f(u) − g(u) 6= 0 for all u ∈ I.
Under the screw motion, its parametrization has the form

(2.1) x(u, v) = (f(u) +
v2

2
p(u) + hv, g(u) +

v2

2
p(u) + hv, p(u)v), h ∈ R,

where p(u) = f(u)− g(u) 6= 0.

3. Helicoidal surfaces with light-like axis in E
3

1

In this section, we study helicoidal surfaces with light-like axis in Minkowski
3-space E

3
1 satisfying equation (1.2).

Suppose that M is a helicoidal surface with light-like axis in E
3
1 parameter-

ized by (2.1). Since the induced metric on M is non-degenerate, f ′(u)−g′(u) 6=
0. Therefore we may change the variable in such a way that p(u) = f(u) −
g(u) = −2u.

Let k(u) = f(u) + u. Then the functions f and g in the profile curve γ look
like

f(u) = k(u)− u and g(u) = k(u) + u.

Thus, the parametrization of M can be written as ([2])

x(u, v) = (k(u)− u− uv2 + hv, k(u) + u− uv2 + hv,−2uv), h ∈ R.

Then the components of the first fundamental form I are given by g11 =
4k′, g12 = 2h, g22 = 4u2. Since M is non-degenerate, 4u2k′ − h2 6= 0. And the
standard unit normal vector field N is defined by

N =
1

√

|4u2k′ − h2|
(uk′ + u+ uv2 − vh, uk′ − u+ uv2 − vh, 2uv − h).

We also have the second fundamental form II with components given by

h11 =
−2uk′′

√

|4u2k′ − h2|
, h12 =

2h
√

|4u2k′ − h2|
, h22 =

4u2

√

|4u2k′ − h2|
.

Then we get the mean curvature H and the Gaussian curvature K as follows:

H =
−u3k′′ + 2u2k′ − h2

|4u2k′ − h2|3/2
and K =

−2u3k′′ − h2

4u2k′ − h2
.

Moreover, the components of the third fundamental form III are given by

t11 =
4(u4k′′

2
+ uk′′h2 + k′h2)

(4u2k′ − h2)2
, t12 =

2h

4u2k′ − h2
, t22 =

4u2

4u2k′ − h2
.

Suppose that the third fundamental form on M is non-degenerate. Then we
get 2u3k′′ + h2 6= 0. By a straightforward computation, we have the Laplacian
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∆III with respect to III of the position vector field x as following

(3.1) ∆IIIx = −
4u2k′ − h2

(2u3k′′ + h2)3
(X ,Y , Z),

where we have put

X = X(u, v)(3.2)

= 2h4u− 12h2k′u3 − 4h2k′′u4 − 2h2k′′′u5 − 4k′′
2
u7 + 8k′k′′′u7

− 2h4k′u+ h4k′′u2 + 12h2k′
2
u3 + h4k′′′u3 − 4h2k′k′′u4

− 6h2k′′
2
u5 − 2h2k′k′′′u5 + 12k′k′′

2
u7 − 8k′

2
k′′′u7 − 4k′′

3
u8

+ (−2h5 + 4h3k′u2 − 12h3k′′u3 − 2h3k′′′u4 + 32hk′k′′u5

− 4hk′′
2
u6 + 8hk′k′′′u6)v + (2h4u− 12h2k′u3 − 4h2k′′u4

− 2h2k′′′u5 − 4k′′
2
u7 + 8k′k′′′u7)v2

and

Y = Y (u, v)(3.3)

= − 2h4u+ 12h2k′u3 + 4h2k′′u4 + 2h2k′′′u5 + 4k′′
2
u7 − 8k′k′′′u7

− 2h4k′u+ h4k′′u2 + 12h2k′
2
u3 + h4k′′′u3 − 4h2k′k′′u4

− 6h2k′′
2
u5 − 2h2k′k′′′u5 + 12k′k′′

2
u7 − 8k′

2
k′′′u7 − 4k′′

3
u8

+ (−2h5 + 4h3k′u2 − 12h3k′′u3 − 2h3k′′′u4 + 32hk′k′′u5

− 4hk′′
2
u6 + 8hk′k′′′u6)v + (2h4u− 12h2k′u3 − 4h2k′′u4

− 2h2k′′′u5 − 4k′′
2
u7 + 8k′k′′′u7)v2.

Equation (3.2) can be written as

X(u, v) = X1(u) +X2(u)v +X3(u)v
2

by factorizing out by v. Here we put

X1(u) = 2h4u− 12h2k′u3 − 4h2k′′u4 − 2h2k′′′u5 − 4k′′
2
u7 + 8k′k′′′u7

− 2h4k′u+ h4k′′u2 + 12h2k′
2
u3 + h4k′′′u3 − 4h2k′k′′u4 − 6h2k′′

2
u5

− 2h2k′k′′′u5 + 12k′k′′
2
u7 − 8k′

2
k′′′u7 − 4k′′

3
u8,

X2(u) = − 2h5 + 4h3k′u2 − 12h3k′′u3 − 2h3k′′′u4 + 32hk′k′′u5 − 4hk′′
2
u6

+ 8hk′k′′′u6,

X3(u) = 2h4u− 12h2k′u3 − 4h2k′′u4 − 2h2k′′′u5 − 4k′′
2
u7 + 8k′k′′′u7.

In fact, X − Y = 2X3 and we also get

(3.4) uX2 − hX3 = 4hu(2u3k′′ + h2)(4u2k′ − h2).
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Moreover, the third component Z in (3.1) is expressed by Z(u, v) = X2(u) +
2X3(u)v.

Now we suppose that M satisfies the condition (1.2). Then we obtain

(3.5) −
4u2k′ − h2

(2u3k′′ + h2)3
X = a11(k−u−uv2+hv)+a12(k+u−uv2+hv)−2a13uv,

(3.6) −
4u2k′ − h2

(2u3k′′ + h2)3
Y = a21(k−u−uv2+hv)+a22(k+u−uv2+hv)−2a23uv,

(3.7) −
4u2k′ − h2

(2u3k′′ + h2)3
Z = a31(k−u−uv2+hv)+a32(k+u−uv2+hv)−2a33uv,

where aij are the components of the matrix A and i, j = 1, 2, 3.
Combining (3.5) and (3.6), we get the following equations:

−
2(4u2k′ − h2)

(2u3k′′ + h2)3
X3 = (a11 + a12 − a21 − a22)(k − uv2 + hv)(3.8)

− (a11 − a12 − a21 + a22)u− 2(a13 − a23)uv,

−
2(4u2k′ − h2)

(2u3k′′ + h2)3
(X1 −X3 +X2v +X3v

2)(3.9)

= (a11 + a12 + a21 + a22)(k − uv2 + hv)

− (a11 − a12 + a21 − a22)u − 2(a13 + a23)uv.

If we consider that (3.8) is a polynomial in the parameter v with functions of
u as coefficients, we have

(3.10) a11 + a12 − a21 − a22 = 0 and a13 − a23 = 0.

Therefore, equation (3.8) can be reduced as

(3.11)
2(4u2k′ − h2)

(2u3k′′ + h2)3
X3 = (a11 − a12 − a21 + a22)u.

Similarly, if we consider that (3.9) is a polynomial in the parameter v with
functions of u as coefficients, we obtain as follows:

(3.12)
2(4u2k′ − h2)

(2u3k′′ + h2)3
X3 = (a11 + a12 + a21 + a22)u,

(3.13)
2(4u2k′ − h2)

(2u3k′′ + h2)3
X2 = −h(a11 + a12 + a21 + a22) + 2(a13 + a23)u,

(3.14)
2(4u2k′ − h2)

(2u3k′′ + h2)3
(X1−X3) = −(a11+a12+a21+a22)k+(a11−a12+a21−a22)u.
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If we compare the right hand sides of equations (3.11) and (3.12), we easily get
a12+a21 = 0. Hence equations (3.12), (3.13) and (3.14) with the help of (3.10)
are reduced as follows:

(3.15)
2(4u2k′ − h2)

(2u3k′′ + h2)3
X3 = (a11 + a22)u,

(3.16)
2(4u2k′ − h2)

(2u3k′′ + h2)3
X2 = −h(a11 + a22) + 4a13u,

(3.17)
2(4u2k′ − h2)

(2u3k′′ + h2)3
(X1 −X3) = −(a11 + a22)k − 4a12u.

Combining (3.15) and (3.16) and using (3.4), we obtain

(3.18)
4h(4u2k′ − h2)2

(2u3k′′ + h2)2
= −h(a11 + a22) + 2a13u.

Similarly as above, we have a31 + a32 = 0 from (3.7). Since Z = X2 + 2X3v,
we also obtain

(3.19)
4u2k′ − h2

(2u3k′′ + h2)3
X2 = 2a31u and

4u2k′ − h2

(2u3k′′ + h2)3
X3 = a33u.

If we examine (3.15), (3.16) and (3.19), we have

a11 + a22 = 2a33, a13 = a31, h(a11 + a22) = 0.

Thus we obtain ha33 = 0.
Now we suppose that h 6= 0. Then a33 = 0 and so a11 + a22 = 0. From

(3.19), X3 = 0. Moreover, if we investigate (3.18), a13 cannot be zero. Since
a11 − a22 = −2a12, a12 = −a11. Hence A is given by

A =





a11 −a11 a13
a11 −a11 a13
a13 −a13 0



 , a13 6= 0.

Furthermore, from X3 = 0, we have the following differential equation

h4 − 6h2k′u2 − 2h2k′′u3 − h2k′′′u4 − 2k′′
2
u6 + 4k′k′′′u6 = 0.

If we put y = 4k′ − h2

u2 , the above equation can be written as

(3.20) yy′′ −
1

2
y′

2
= 0.

If y = c for some constant c, then we get 2u3k′′ + h2 = 0 by differentiating the
function y with respect to the parameter u. It contradicts the non-degeneracy
of the third fundamental form on M . Thus, y is a non-constant function and
the general solution of (3.20) is given by

(3.21) y =
1

4
(c1u+ c2)

2
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for some constants c1 6= 0 and c2. On the other hand, if we represent (3.18) in
terms of y, it is given by

(3.22) 8hy2 − a13u
3y′

2
= 0.

Putting (3.21) into (3.22), we have c1 = 0 and h = 0 because of a13 6= 0, a
contradiction. Therefore, we conclude that h = 0.

Thus we have the following theorem.

Theorem 3.1. Let M be a helicoidal surface with light-like axis in Minkowski

3-space E
3
1. Then there exists no genuine helicoidal surface satisfying the con-

dition (1.2).

In general, if a pitch h is zero, then M is a surface of revolution. From now
on, we investigate surfaces of revolution with light-like axis in E

3
1 satisfying the

condition (1.2).
In this case, it easily seen that X2 vanishes. Hence a31 = 0 in (3.19) and so

a13 = a23 = a31 = a32 = 0. Therefore, the matrix A has the form

A =





a11 a12 0
−a12 a22 0
0 0 a33



 , a11 + a22 = 2a33, a11 − a22 = −2a12.

On the other hand, from (3.15) and (3.17), we have the system of differential
equations

(3.23)











−2k′

uk′′3 (k
′′2 − 2k′k′′′) = λ,

−2k′

k′′3 (3k′k′′
2
− 2k′

2
k′′′ − k′′

3
u) = λk + 2µu,

where λ = a33 and µ = a12.

We now consider two cases separately according to λ.

Case 1. λ = 0. In this case, we have k′′
2
− 2k′k′′′ = 0. Then the solution is

given by

k(u) =
1

12a
u3 + c, a > 0

for some constant c. Putting it in the second equation of (3.23), we get µ =
0. Moreover, we easily lead to X = 0 in (3.2). Then it implies a11 = 0 in
(3.5). Thus, all the components of A are zero. Consequently, the surface M is
parameterized by

x(u, v) = (
1

12a
u3 − u− uv2 + c,

1

12a
u3 + u− uv2 + c,−2uv), a > 0

for some constant c. It is the Enneper surface of the second kind according to
[7].

Case 2. λ 6= 0. From the system of differential equations (3.23), we have

(3.24) 4k′
2
− (λ + 2)uk′k′′ + λkk′′ + 2µuk′′ = 0.
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It could be hard to get a general solution but not analytical solution.
Therefore, we obtain the following theorem:

Theorem 3.2. Let M be a surface of revolution with light-like axis in Minkow-

ski 3-space E
3
1. Suppose that M satisfies the condition (1.2). Then M is a part

of Enneper surface of the second kind or the surface determined by the function

k = k(u) satisfying equation (3.24).

Together with Theorem 3.1 and Theorem 3.2, we have:

Theorem 3.3. Let M be a helicoidal surface with light-like axis in Minkowski

3-space E
3
1. Suppose that M satisfies the condition ∆IIIx = Ax for some A ∈

Mat(3,R). Then M is a part of Enneper surface of the second kind or the

surface determined by the function k = k(u) satisfying equation (3.24).

Remark. If we put λ = −2 and µ = 0 in (3.24) and it becomes

4k′
2
− 2kk′′ = 0,

then the general solution is given by

k(u) =
1

au

for some non-zero constant a. Hence, the surface M is parameterized by

x(u, v) = (
1

au
− u− uv2,

1

au
+ u− uv2,−2uv), a 6= 0.

In this case, we have a11 = a22 = a33 because of µ = a12 = 0. Therefore, A is
a diagonal matrix with diagonal component λ = −2.

As a consequence, putting together with the results described above and
theorems in [10], we have the following result:

Theorem 3.4. Let M be a helicoidal surface in Minkowski 3-space E3
1. Suppose

that M satisfies the condition ∆IIIx = Ax for some A ∈ Mat(3,R). Then M

is a part of right helicoid of type I, right helicoid of type II, Enneper surface of

the second kind or the surface determined by the function k = k(u) satisfying

the equation (3.24).
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