• Title/Summary/Keyword: heavy tail

Search Result 59, Processing Time 0.026 seconds

On Tail Probabilities of Continuous Probability Distributions with Heavy Tails (두꺼운 꼬리를 갖는 연속 확률분포들의 꼬리 확률에 관하여)

  • Yun, Seokhoon
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.759-766
    • /
    • 2013
  • The paper examines several classes of probability distributions with heavy tails. An (asymptotic) expression for tail probability needs to be known to understand which class a given probability distribution belongs to. It is usually not easy to get expressions for tail probabilities since most absolutely continuous probability distributions are specified by probability density functions and not by distribution functions. The paper proposes a method to obtain asymptotic expressions for tail probabilities using only probability density functions. Some examples are given to illustrate the proposed method.

A NOTE ON THE SEVERITY OF RUIN IN THE RENEWAL MODEL WITH CLAIMS OF DOMINATED VARIATION

  • Tang, Qihe
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.663-669
    • /
    • 2003
  • This paper investigates the tail asymptotic behavior of the severity of ruin (the deficit at ruin) in the renewal model. Under the assumption that the tail probability of the claimsize is dominatedly varying, a uniform asymptotic formula for the tail probability of the deficit at ruin is obtained.

Wind tunnel study on drag reduction of a 5 ton truck using additive devices (유동제어용 부착물을 이용한 5톤 화물차의 항력 감소에 관한 실험적 연구)

  • Lee, EuiJae;Hwang, BaeGeun;Kim, JeongJae;Lee, SangJoon
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • There have been many attempts to reduce the cost of transportation. Especially, drag reduction of heavy vehicles has enormous influence on energy saving by reducing the driving power of the vehicles. In this study, the effects of drag-reducing additive devices such as side skirt, boat tail and cab-roof fairing on the drag reduction of a 5 ton truck model were experimentally investigated. The aerodynamic performance of these flow-control devices attached to heavy vehicle was evaluated through wind tunnel test. In addition, flow patterns around the truck model were visualized by using smoke tube method. The drag coefficient is reduced by up to 5.7%, 7.16% and 22.2% by the side skirt, boat tail and cab-roof fairing, respectively. The interactive effect of the side skirt and boat tail was also investigated.

Estimation of GHG Emissions Reduction and Fuel Economy Improvement of Heavy-Duty Trucks by Using Side Skirt and Boat Tail (사이드스커트와 보트테일을 이용한 대형화물차량의 연비개선 효과 및 온실가스 감축량 추정)

  • Her, Chul haeng;Yun, Byoeng gyu;Kim, Dae wook
    • Journal of Climate Change Research
    • /
    • v.7 no.2
    • /
    • pp.177-184
    • /
    • 2016
  • Recently, the need for technology development of commercial vehicle fuel consumption has emerged. Fuel economy improvement of transport equipment and transportation efficiency, and increasing attention to the logistics cost reduction measures. Increasing attention to the logistics cost reduction measures by fuel economy improvement of transport equipment and transportation efficiency. In this study, we have installed aerodynamic reduction device (side skirt, boat tail) to 14.5 ton cargo trucks and 45 ft tractor-trailers. And the fuel consumption was compared installed before and after. Fuel economy assessment for the aerodynamic reduction value device was tested by modifying the SAE J1321 Joint TMC/SAE Fuel Consumption Test Procedure - Type II test in according domestic situation. Greenhouse gas reductions were calculated in accordance with the scenario, including fuel consumption test results. When the 14.5 ton cargo trucks has been equipped with side skirts and boat tail, it confirmed the improvement in fuel efficiency of 4.72%. One Heavy-duty truck's the annual greenhouse gas reductions value are $6.86ton\;CO_2\;eq$. And if applying the technology to more than 50% of registered 15 ton trucks, greenhouse gas reductions are calculated as $686,826ton\;CO_2\;eq./yr$.

Forecasting Modeling of Heavy Tail Typed Demand using Student's t-Copula Fitting in Supply Chain Management (Student's t-Copula 적합을 통한 Heavy Tail형 SCM 수요 데이터의 모델링 및 분석)

  • Kim, Taesung;Lee, Hyunsoo
    • Journal of Digital Convergence
    • /
    • v.11 no.9
    • /
    • pp.103-111
    • /
    • 2013
  • As the demand-oriented management has been getting important in Supply Chain Management (SCM), various forecasting methods have been suggested including regression analyses. However, dependency structures among variables have been captured by a correlation coefficient, only. It results in inaccurate demand predictions. This paper suggests a new and effective forecasting modeling framework using student's t-copula function. In order to show overall modeling procedures framework, heavy tail typed numerical data and its copula estimations are provided. The suggested methodology can contribute to decrease the bullwhip effect and to stabilize volatile environment in a supply chain network.

POWER TAIL ASYMPTOTIC RESULTS OF A DISCRETE TIME QUEUE WITH LONG RANGE DEPENDENT INPUT

  • Hwang, Gang-Uk;Sohraby, Khosrow
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.87-107
    • /
    • 2003
  • In this paper, we consider a discrete time queueing system fed by a superposition of an ON and OFF source with heavy tail ON periods and geometric OFF periods and a D-BMAP (Discrete Batch Markovian Arrival Process). We study the tail behavior of the queue length distribution and both infinite and finite buffer systems are considered. In the infinite buffer case, we show that the asymptotic tail behavior of the queue length of the system is equivalent to that of the same queueing system with the D-BMAP being replaced by a batch renewal process. In the finite buffer case (of buffer size K), we derive upper and lower bounds of the asymptotic behavior of the loss probability as $K\;\longrightarrow\;\infty$.

An Estimation of Springing Responses for Recent Ships

  • Park In-Kyu;Lee Soo-Mok;Jung Jong-Jin;Yoon Myung-Cheol
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.173-178
    • /
    • 2004
  • The estimation of springing responses for recent ships are carried out and application to a ship design are described. To this aim, springing effects on hull girder were re-evaluated including non-linear wave excitations and torsional vibrations of the hull. The Timoshenko beam model was used to calculate stress distribution on the hull girder by the superposition method. The strip method was employed to calculate the hydrodynamic forces and moments on the hull. In order to remove the irregular frequencies, we adopted 'rigid lid' on the hull free surface level and added asymptotic interpolation along the high frequency range. Several applications to the existing ships were carried out. They are Bishop and Price's container ship, S-175 container ship, large container, VLCC and ore carrier. One of them is compared with ship measurement result while another with that of model test. Comparison between analytical solution and numerical one for homogeneous beam type artificial ship shows good agreement. It is found that most springing energy came from high frequency waves for the ships having low natural frequency and North Atlantic route etc. Therefore, the high frequency tail of the wave spectrum should be increased by $\omega^{-3}\;instead\;of\;\omega^{-4}\;or\;\omega^{-5}$ for springing calculation.

  • PDF

Review of Application Models According to the Classification of Asymptotic Tail Distribution (근사 꼬리분포의 유형별 적용 모형 고찰)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.11a
    • /
    • pp.35-39
    • /
    • 2010
  • The research classifies three types of asymptotic tail distributions such as long(heavy, thick) tailed distribution, medium tailed distribution and short(light, thin) tailed distribution. The extreme value distributions(EVD) classified in this paper can be used in SPC(Statistical Process Control) control chart and reliability engineering.

  • PDF

Importance sampling with splitting for portfolio credit risk

  • Kim, Jinyoung;Kim, Sunggon
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.327-347
    • /
    • 2020
  • We consider a credit portfolio with highly skewed exposures. In the portfolio, small number of obligors have very high exposures compared to the others. For the Bernoulli mixture model with highly skewed exposures, we propose a new importance sampling scheme to estimate the tail loss probability over a threshold and the corresponding expected shortfall. We stratify the sample space of the default events into two subsets. One consists of the events that the obligors with heavy exposures default simultaneously. We expect that typical tail loss events belong to the set. In our proposed scheme, the tail loss probability and the expected shortfall corresponding to this type of events are estimated by a conditional Monte Carlo, which results in variance reduction. We analyze the properties of the proposed scheme mathematically. In numerical study, the performance of the proposed scheme is compared with an existing importance sampling method.

CLOSURE PROPERTY AND TAIL PROBABILITY ASYMPTOTICS FOR RANDOMLY WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES WITH HEAVY TAILS

  • Dindiene, Lina;Leipus, Remigijus;Siaulys, Jonas
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1879-1903
    • /
    • 2017
  • In this paper we study the closure property and probability tail asymptotics for randomly weighted sums $S^{\Theta}_n={\Theta}_1X_1+{\cdots}+{\Theta}_nX_n$ for long-tailed random variables $X_1,{\ldots},X_n$ and positive bounded random weights ${\Theta}_1,{\ldots},{\Theta}_n$ under similar dependence structure as in [26]. In particular, we study the case where the distribution of random vector ($X_1,{\ldots},X_n$) is generated by an absolutely continuous copula.