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Abstract
We consider a credit portfolio with highly skewed exposures. In the portfolio, small number of obligors have

very high exposures compared to the others. For the Bernoulli mixture model with highly skewed exposures,
we propose a new importance sampling scheme to estimate the tail loss probability over a threshold and the
corresponding expected shortfall. We stratify the sample space of the default events into two subsets. One consists
of the events that the obligors with heavy exposures default simultaneously. We expect that typical tail loss events
belong to the set. In our proposed scheme, the tail loss probability and the expected shortfall corresponding to this
type of events are estimated by a conditional Monte Carlo, which results in variance reduction. We analyze the
properties of the proposed scheme mathematically. In numerical study, the performance of the proposed scheme
is compared with an existing importance sampling method.
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1. Introduction

Bernoulli mixture model for portfolio credit risk is a quite general framework for modeling the joint
defaults of the obligors during a time period. In the model, some common factors or risk factors are
introduced to explain the dependency of the joint defaults. The values of the factors determine the
default probability of each obligor. By letting the default probabilities of some obligors have the same
tendency for the change of the factors, one can model the clustered defaults of the obligors. However,
an obligor defaults independently with the others. In other words, the conditional joint defaults of the
obligors are independent Bernoulli events with probabilities specified by the factors. For the detailed
discussion on the Bernoulli mixture model, we refer to McNeil et al. (2015).

For the Bernoulli mixture model of a credit portfolio, we propose a new importance sampling
scheme to estimate efficiently the tail loss probability and the expected shortfall over a high threshold.
The proposed scheme is a combination of the conditional Monte Carlo, the stratified sampling, and
the importance sampling. In the proposed scheme, we split the sample space of the default events
of the obligors into two subspaces so that the probability of the tail loss in a subspace is calculated
exactly. The probability depends on the value of the factors, which are generated randomly. Thus,
this part of the propose scheme is a conditional Monte Carlo (Rubinstein and Kroese, 2016). For the
given value of factors, the conditional probability of the tail loss in the other subspace is estimated
by an importance sampling of the default event. By combining these two conditional probabilities,
we estimate the conditional probability of the tail loss when the factor variables are given. The tail
loss probability is estimated efficiently by an importance sampling of the factor variables. In the same
manner, we estimate the expected shortfall over a high threshold. We apply the two step importance
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sampling proposed by Glasserman and Li (2005) to our scheme. We also propose how to apply
the cross entropy method (Chan and Kroses, 2010) for choosing the importance probability density
function (pdf) of the factor variables, and how to apply the exponential twisting (Glasserman and
Li, 2005) for choosing the importance default probability of each obligor optimally. We analyze
the properties of the proposed scheme mathematically, and compare it with the two step importance
sampling proposed by Glasserman and Li (2005).

The threshold model or the latent variable model, which is commonly used for modeling the
portfolio credit risk, can be represented as a Bernoulli mixture model (Frey and McNeil, 2003).
CreditRisk+ (Gundlach and Lehrbass, 2013) is an industry example of the Poisson mixture model,
where an obligor might default more than once in a time period and the number of defaults follows
the Poisson distribution. By considering the group of obligors with the same exposure and the de-
fault probability as an obligor, Bernoulli mixture model can be approximated by the Poisson mixture
model.

In the Bernoulli mixture model, default events are easy to simulate by adopting a distribution from
which the values of the factors are easy to generate. Examples of such distributions include the multi-
variate normal distribution and the multi-variate student t. Despite the easy simulation of the joint
defaults in the Bernoulli mixture model, it takes long time to obtain the reliable value of risk measure
such as the value-at-risk or the expected shortfall through the crude Monte Carlo simulation. Impor-
tance sampling schemes, where related random variables are generated under a changed probability
measure, are effective to obtain the risk measures (Brereton et al., 2013; Glasserman, 2013; Merino
and Nyfeler, 2004). The common approach to generate the joint default events with large losses is to
shift the mean of the factors (Avrantis and Gregory, 2001; Egloff et al., 2005; Kalkbrener et al., 2004;
Glasserman and Li, 2005). Exponential twisting has been studied for the estimation of the tail loss
probability of the sum of independent or dependent random variables (Sadowsky, 1993; Bucklew et
al., 1990; Glasserman, 2013).

By integrating the exponential twisting of the default probabilities and the mean-shifting of the
risk factors, Glasserman and Li (2005) proposed a two-step importance sampling for the threshold
model, where the joint default probabilities are given by the normal copula, i.e. the risk factors
are multivariate normal and a linear combination of the factors determines the default probabilities
of obligors. They have shown that their algorithm is logarithmically efficient in the single factor
case. The two-step importance sampling of Glasserman and Li (2005) can be easily implemented for
the Bernoulli mixture model in the same manner, in which risk factors are not necessarily normally
distributed, but generally distributed. An implementation is given in Başoğlu et al. (2018).

Bassamboo et al. (2008) considered the case that the joint default probabilities are given by the
t copula. They obtained the asymptotics of the tail loss probability and the expected shortfall in a
large portfolio. They also proposed an importance sampling, and have shown that their method has
bounded relative error in obtaining both the tail loss probability and the expected shortfall. For the
same model as Bassamboo et al. (2008), Chan and Kroese (2010) proposed a fast simulation scheme
to estimate the risk measures mentioned above. Their method is based on conditional Monte Carlo
and has bounded relative error. Another fast Monte Carlo simulation scheme called the geometric
shortcut is proposed by Sak and Hörmann (2012). The scheme can be used for threshold models with
any copula, and can be integrated with the importance sampling of risk factors. Başoğlu et al. (2013)
developed a stratified importance sampling for the t-copula model with multiple loss thresholds, and
they applied their method to the Bernoulli mixture model in Başoğlu et al. (2018). They proposed to
stratify the sample space of the factor variables into equi-probable subsets, and applied the sequential
importance sampling scheme to reduce the variance of the estimation of the risk measure.
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Differently from Başoğlu et al. (2018) in which the sample space of the factor variables is strat-
ified, we stratify the sample space of the default events into two subsets. One of the subsets consists
of the events that some of the obligors with very high exposures default simultaneously. The other
subset is the collection of the remaining events. We expect that the typical occurrence of tail losses
corresponds to the former set of events. In the Başoğlu et al. (2018)’s implementation of the two-step
importance sampling, the default events are generated by the geometric shortcut proposed by Sak and
Hörmann (2012). In this paper, the exponential twisting is adopted to generate the default events for
ease of mathematical analysis. We have shown that the importance sampling with stratifying the sam-
ple space of the default events results in the variance reduction. This paper is organized as follows.
In Section 2, we describe an implementation of the two-step importance sampling for the Bernoulli
mixture model. In Section 3, we propose a two-step importance sampling for the model, and analyze
the scheme mathematically. Numerical results are given in Section 4. Finally, we conclude the paper
in Section 5.

2. Importance sampling for the Bernoulli mixture model

We consider a credit portfolio consisting of m obligors. Let Y j, j = 1, 2, . . . ,m, be the default indicator
of obligor j in time interval [0,T ], i.e.

Y j =

{
1, obligor j defaults in [0,T ],
0, obligor j does not default in [0,T ].

We call Y = (Y1,Y2, . . . ,Ym) the default vector or the default event. The marginal default probability
of obligor j, j = 1, 2, . . . ,m, is Pr{Y j = 1} = p̄ j. We denote by c j, j = 1, 2, . . . ,m, the deterministic
exposure at the default of obligor j. Then, the loss of the portfolio during [0,T ] is given by

L(Y) =
m∑

j=1

c jY j. (2.1)

In what follows, L is the abbreviation of L(Y). We define θ = Pr{L > x} for a threshold x > 0 and
η = E[I(L > x)L]. We assume that θ > 0. Then, the expected shortfall over the threshold x > 0 is
computed as E[L|L > x] = η/θ. Clearly, η < ∞ because we consider the case of finite number of
obligors with deterministic exposures. The crude Monte Carlo (CMC) estimator of θ is

θ̂Cn =
1
n

n∑
i=1

I
(
L(i) > x

)
, (2.2)

where L(i) = L(Y(i)), i = 1, . . . , n, and Y(1), . . . ,Y(n) are i.i.d. random samples of Y. The CMC
estimator of η is given by

η̂C
n =

1
n

n∑
i=1

I
(
L(i) > x

)
L(i). (2.3)

Then, E[L|L > x] is estimated as

β̂C
n =
η̂C

n

θ̂Cn
. (2.4)
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In the following subsection, we introduce briefly the Bernoulli mixture model for modeling the
dependency of Y. In the model, the default events of the obligors depend on some common factors.
The performance of the CMC estimators in Equations (2.2) and (2.4) can be improved by employing
an importance sampling of the factor variables and the default event. The two step importance sam-
pling proposed by Glasserman and Li (2005) which was originally developed for the threshold model
can be simply applied to the Bernoulli mixture model. We explain how to do the two step importance
sampling in the Bernoulli mixture model in Sections 2.2 and 2.3. Chan and Kroese (2010) proposed
the cross entropy method for the optimal selection of the sampling distribution of the factors in the
t-copula model. The method can be applied to the Bernoulli mixture model. We explain the procedure
in Section 2.4.

2.1. Bernoulli mixture model for dependent defaults of obligors

In the Bernoulli mixture model, the dependency of default events is modeled by introducing a number
of d common factors Ψ = (Ψ1, . . . ,Ψd) ∈ Rd. Let p j(ψ), j = 1, 2, . . . ,m, be the conditional default
probability of obligor j given Ψ = ψ. In the model, default indicators Y1, . . . , Ym are conditionally
independent when the value ofΨ is given. Then, the conditional joint probability mass function (pmf)
of the random vector Y given Ψ = ψ is as follows: for y = (y1, . . . , ym) ∈ {0, 1}m,

p(y|ψ) =
m∏

j=1

Pr
{
Y j = y j|Ψ = ψ

}
=

m∏
j=1

p j(ψ)y j
(
1 − p j(ψ)

)1−y j
. (2.5)

The joint pmf of Y is given by

p(y) =
∫ m∏

j=1

p j(ψ)y j
(
1 − p j(ψ)

)1−y j
f (ψ)dψ, (2.6)

where f (ψ) is the pdf of Ψ. We define P as the probability measure on Rd × {0, 1}m induced from
f (ψ)p(y|ψ). Then, Pr{Y j = 1} is equal to EP[I(Y j = 1)]. Since EP[I(Y j = 1)] = E f [p j(Ψ)], we have
that

E f

[
p j(Ψ)

]
= p̄ j, j = 1, 2, . . . ,m, (2.7)

where E f [ξ(Ψ)] is the expectation of ξ(Ψ) for a real valued function ξ under the pdf f (ψ) of Ψ. If Ψ
follows a pdf g(ψ), then the expectation of ξ(Ψ) is denoted by Eg[ξ(Ψ)].

2.2. Two step importance sampling

In the Bernoulli mixture model, we want to find an efficient importance sampling distribution for Ψ
and a conditional importance sampling distribution Y given Ψ. Let g(ψ) be an importance pdf of Ψ
and q j(ψ), j = 1, 2, . . . ,m, be an importance default probability for obligor j given Ψ = ψ. We denote
by q(y|ψ) the conditional joint pmf of Y given Ψ = ψ, i.e.

q(y|ψ) =
m∏

j=1

q j(ψ)y j
(
1 − q j(ψ)

)1−y j
.
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We assume that g(ψ)q(y|ψ) > 0 whenever f (ψ)p(y|ψ) > 0, and define Q as the probability measure
on Rd × {0, 1}m induced from g(ψ)q(y|ψ).

For a positive valued function h, we define Ep[h(L)|ψ](Eq[h(L)|ψ]) as the conditional expectation
of h(L) when the joint pmf of Y is p(y|ψ)(q(y|ψ)). We also define EP[h(L)](EQ[h(L)]) as the expec-
tation of h(L) when (Ψ,Y) follows the probability measure P(Q). Then, EP[h(L)] has the following
representation:

EP[h(L)] = E f

[
Ep [h(L)|Ψ]

]
= Eg

[
Eq [w(Ψ,Y)h(L)|Ψ]

]
, (2.8)

where

w(Ψ,Y) =
f (Ψ)p(Y|Ψ)
g(Ψ)q(Y|Ψ)

.

Then, Equation (2.8) is rewritten as

EP[h(L)] = EQ [w(Ψ,Y)h(L)] . (2.9)

Suppose that we have random samples (Ψ(1),Y(1)), . . . , (Ψ(n),Y(n)) from Q. Let w(i) = w(Ψ(i),Y(i))
and L(i) = L(Y(i)), i = 1, . . . , n. Then, Equation (2.9) gives an estimator of EP[h(L)] as

ÊP[h(L)] =
1
n

n∑
i=1

w(i)h
(
L(i)

)
. (2.10)

Since P(L > x) = EP[I(L > x)], Equation (2.10) says that importance sampling estimators of θ and η
are given by

θ̂Tn =
1
n

n∑
i=1

w(i)I
(
L(i) > x

)
, (2.11)

and

η̂T
n =

1
n

n∑
i=1

w(i)I
(
L(i) > x

)
L(i), (2.12)

respectively. Note that θ̂Tn → θ almost surely, and η̂T
n → η almost surely as n → ∞ due to the strong

law of large numbers. Since EP[L|L > x] = η/θ, EP[L|L > x] is estimated by

ÊP[L|L > x] =
η̂T

n

θ̂Tn
. (2.13)

Let β̂T
n = η̂

T
n /θ̂

T
n . Then, we have

β̂T
n → EP[L|L > x], a.s.
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2.3. Exponential twisting for the conditional sampling distributions of defaults

Glasserman and Li (2005) have shown that the exponential twisting is an efficient way to adopt the
importance sampling pmf of Y. Let q j(t,ψ) be the exponential twisting of p j(ψ), i.e.

q j(t,ψ) =
p j(ψ) exp

(
c jt

)
1 − p j(ψ) + p j(ψ) exp

(
c jt

) , j = 1, . . . ,m. (2.14)

They consider q j(t,ψ) as an importance default probability of obligor j, j = 1, . . . ,m, when Ψ =
ψ is given. Let qt(y|ψ) be the corresponding joint pmf of Y, and r(y|ψ) the conditional likelihood
p(y|ψ)/qt(y|ψ). Then, we have

Ep[h(L)|ψ] = Eq
[
r(Y|Ψ)h(L)|ψ]

, (2.15)

where Eq
[
r(Y|Ψ)h(L)|ψ]

is the conditional expectation of r(Y|Ψ)h(L) with Y following qt(y|ψ) and
Ψ = ψ.

As mentioned in Glasserman and Li (2005), r(y|ψ) is represented in terms of L(y) as follows:

r(y|ψ) = ML(t|ψ) exp {−L(y)t} , (2.16)

where ML(t|ψ) is the conditional moment generating function (m.g.f.) of L with Y following p(y|ψ).
Since Y1, . . . ,Ym are conditionally independent given Ψ, we have that

ML(t|ψ) =
m∏

j=1

{(
1 − p j(ψ)

)
+ p j(ψ) exp

(
c jt

)}
.

Glasserman and Li (2005) obtained an upper bound of V[θ̂Tn |ψ] in the case that qt(y|ψ) is adopted
as the importance sampling pmf of Y given Ψ = ψ, and showed that the upper bound is minimized at
t = t(ψ) given by

t(ψ) =

the solution of
∑m

j=1 c jq j(t,ψ) = x, x > Ep[L|ψ],
0, x ≤ Ep[L|ψ].

(2.17)

Then, the optimal default probability of obligor j for the importance sampling, is q∗j(ψ) = q j(t(ψ),ψ),
j = 1, . . . ,m. The corresponding conditional joint pmf of Y is

q∗(y|ψ) =
m∏

j=1

q∗j(ψ)y j
(
1 − q∗j(ψ)

)1−y j
, y ∈ {0, 1}m. (2.18)

2.4. Cross entropy method for the sampling distribution of factors

Suppose that the pdf f (ψ) has a parameter µwhich can be vector-valued. We denote the pdf by f (ψ;µ)
to specify the value of the parameter. The zero variance pdf for the importance sampling to estimate
EP[h(L)] is

η(ψ;µ) =
Ep[h(L)|ψ] f (ψ;µ)

EP[h(L)]
. (2.19)
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Chan and Kroese (2010) proposed to confine the parametric family of the importance sampling den-
sities to

F = { f (ψ; ν)}, (2.20)

and to adopt f (ψ; ν) as the one having the minimum Kullback-Leibler or cross-entropy distance to the
zero variance density η(ψ;µ) in Equation (2.19). Due to Rubinstein and Kroese (2016), the optimal
value ν∗ is obtained by

ν∗ = argmax
ν

∫
Ep[h(L)|ψ] log f (ψ; ν) f (ψ;µ) dψ. (2.21)

Instead of normal approximation of Ep[h(L)|ψ] as done in Başoğlu et al. (2018), we consider the
exponentially twisted joint default pmf q∗(y|ψ) given Equation (2.18). Then, the above equation is
converted to

ν∗ = argmax
ν

∫
Eq∗

[
r(Y|ψ)h(L)|ψ]

log f (ψ; ν) f (ψ;µ) dψ. (2.22)

The maximization problem (2.22) can be solved by the simulation based optimization. We gen-
erate independently Ψ(1), . . . ,Ψ(M) from f (ψ;µ), and Y(i) from q∗(y|Ψ(i)), i = 1, . . . ,M. Then, the
generated ith loss is L(i). It follows from Chan and Kroese (2010) that the problem (2.22) is converted
to solve the following stochastic maximization problem:

maximize
ν

1
M

M∑
i=1

r
(
Y(i)|Ψ(i)

)
h
(
L(i)

)
log f

(
Ψ(i); ν

)
. (2.23)

Let ν∗ be the solution of Equation (2.23). Then, the optimal importance pdf of Ψ is f (ψ; v∗), and the
likelihood ratio for an event (ψ, y) is

w(ψ, y) =
f (ψ;µ)
f (ψ; ν∗)

ML(t(ψ)|ψ) exp{−L(y)t(ψ)}.

3. A two step importance sampling with splitting

In this section, we propose a type of two step importance sampling to estimate efficiently the tail loss
probability over a threshold x and the corresponding expected shortfall in the case that the distribution
of {c j}mj=1 is heavily skewed to the right.

3.1. The proposed scheme for the estimation of the tail loss probability

Without loss of generality, we assume that c1, . . . , cm are in their descending order, and let k be the
integer satisfying

k = min

i :
i∑

j=1

c j > x

 . (3.1)

We call the first k-obligors heavy obligors. Equation (3.1) implies that if all heavy obligors default
simultaneously, then a tail loss over x occurs.
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We define S as the sample space of the default vector Y, i.e. S = {0, 1}m. The sample space S is
split into two disjoint subspaces S0 and S1. For a default vector y ∈ S, y belongs to S0 if and only if
the first k components of y is equal to 1 (i.e., all heavy obligors default). If at least one of them does
not default, then the corresponding default vector y belongs to S1. From the definition of the set S0,
we observe

L(y) =
k∑

j=1

c j +

m∑
j=k+1

c jy j, y ∈ S0. (3.2)

Since
∑k

j=1 c j > x, it follows from the above equation that L(y) > x for y ∈ S0, which means
I(Y ∈ S0, L > x) = I(Y ∈ S0). Then,

I(L > x) = I(Y ∈ S0) + I(L > x,Y ∈ S1). (3.3)

Suppose that Ψ is given to be ψ, and that Y follows the pmf p(y|ψ). Then,

Ep
[
I(L > x)|ψ]

= Ep
[
I(Y ∈ S0)|ψ]

+ Ep
[
I(L > x,Y ∈ S1)|ψ]

. (3.4)

In Equation (3.4), Ep[I(L > x)|ψ] is the conditional tail loss probability over the threshold x given
Ψ = ψ. In the equation, Ep[I(Y ∈ S0)|ψ] is the conditional loss probability due to the event Y ∈ S0.
We denote it by pa(ψ). Since Y1,Y2, . . . ,Ym are conditionally independent given Ψ = ψ, we have

pa(ψ) =
k∏

j=1

p j(ψ).

The last term of Equation (3.4) is the conditional tail loss probability due to the event Y ∈ S1. By
changing the conditional pmf of Y from p(y|ψ) to q(y|ψ), we have the following form of it under the
importance pmf q(y|ψ):

Ep[I(Y ∈ S1, L > x)|ψ] = Eq[r(Y|ψ)I(Y ∈ S1, L > x)|ψ],

where r(y|ψ) = p(y|ψ)/q(y|ψ). For given Ψ = ψ, we let q(Y ∈ S1|ψ) be the conditional probability of
the event {Y ∈ S1} with Y following the pmf q(y|ψ). Under the same pmf of Y, we let Eq[r(Y|ψ)I(L >
x)|Y ∈ S1,ψ] be the conditional expectation of r(Y|ψ)I(L > x) given Y ∈ S1 and Ψ = ψ. By
conditioning on the event {Y ∈ S1}, the above equation is converted to

Ep[I(Y ∈ S1, L > x)|ψ] = q(Y ∈ S1|ψ)Eq[r(Y|ψ)I(L > x)|ψ,Y ∈ S1].

We denote q(Y ∈ S1|ψ) by qs(ψ) for simplicity of notation. Note that qs(ψ) is the probability that
some of the heavy obligors do not default. Then, its values is computed as

qs(ψ) = 1 −
k∏

j=1

q j(ψ).

When it is given that Ψ = ψ and Y ∈ S1, the conditional joint pmf of Y is given by

q̃(y|ψ) =
q(y|ψ)
qs(ψ)

, y ∈ S1. (3.5)
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Then, q̃(y|ψ) is the conditional pmf of q(y|ψ) when the sample space is confined to S1, which means

Eq
[
r(Y|ψ)I(L > x)|ψ,Y ∈ S1

]
= Eq̃

[
r(Y|ψ)I(L > x)|ψ]

. (3.6)

From the above equations, it follows that Equation (3.4) is rewritten as

Ep[I(L > x)|ψ] = pa(ψ) + qs(ψ)Eq̃
[
r(Y|ψ)I(L > x)|ψ]

. (3.7)

In Equation (3.7), Ep[I(L > x)|ψ] is the conditional probability of the tail loss over x givenΨ = ψ,
and pa(ψ) is the tail loss probability due to the event {Y ∈ S0}, which is calculated exactly. The tail
loss probability due to the event {Y ∈ S1} is given by the last part of the equation, in which qs(ψ) is
calculated exactly, and Eq̃[r(Y|ψ)I(L > x)|Y ∈ S1,ψ] is estimated by random sampling of the default
vector Y ∈ S1 from the importance pmf q̃(y|ψ). In this way, the conditional tail loss probability can
be estimated by splitting the sample space S into S0 and S1. From the form of Ep[I(L > x)|ψ] in
Equation (3.7), we obtain the following proposition.

Proposition 1. P(L > x) is represented in terms of g(ψ) and q̃(y|ψ) as:

P(L > x) = Eg

[
f (Ψ)
g(Ψ)

pa(Ψ) + qs(Ψ)Eq̃ [w(Ψ,Y)I(L > x)|Ψ]
]
. (3.8)

Proof: From the definition of the probability measure P, it follows that

P(L > x) = E f

[
Ep[I(L > x)|Ψ]

]
.

Changing the pdf of Ψ from f (ψ) to g(ψ) gives

P(L > x) = Eg

[
f (Ψ)
g(Ψ)

Ep[I(L > x)|Ψ]
]
.

By applying Equation (3.7) to above equation, we have

P(L > x) = Eg

[
f (Ψ)
g(Ψ)

(
pa(Ψ) + qs(Ψ)Eq̃[r(Y|Ψ)I(L > x)|Ψ]

)]
.

If we note that w(Ψ,Y) = ( f (Ψ)/g(Ψ))r(Y|Ψ), then the proof completes. 2

We define Q̃ as the probability measure on Rd × S1 induced from g(ψ)q̃(y|ψ). It follows from the
above equation that

P(L > x) = EQ̃

[
f (Ψ)
g(Ψ)

pa(Ψ) + qs(Ψ)w(Ψ,Y)I(L > x)
]
. (3.9)

Sampling from q̃(y;ψ) is done by the following procedure:

i. sample Y1, . . . , Yk independently from the Bernoulli distribution with Pr(Y j = 1) = q j(ψ) for
1 ≤ j ≤ k.

ii. if (Y1, . . . ,Yk) = (1, . . . , 1), then resample Y1, . . . ,Yk as described in (i) until (Y1, . . . ,Yk) ,
(1, . . . , 1).
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iii. sample Yk+1, . . . ,Ym independently from the Bernoulli distribution with Pr(Y j = 1) = q j(ψ) for
k + 1 ≤ j ≤ m.

Then Y = (Y1, . . . , Ym) obtained by the above procedure is a sample from q̃(y|ψ). Suppose that we have
samples (Ψ(1),Y(1)), . . . , (Ψ(n),Y(n)) from Q̃. Then, from Equation (3.9), we can see that an importance
sampling estimator for P(L > x) is given by

θ̂Sn =
1
n

n∑
i=1

f
(
Ψ(i)

)
g
(
Ψ(i)) pa

(
Ψ(i)

)
+ qs

(
Ψ(i)

)
w(i)I

(
L(i) > x

)
, (3.10)

where

w(i) =
f
(
Ψ(i)

)
g
(
Ψ(i)) r

(
Y(i)|Ψ(i)

)
.

In Equation (3.10), the sample average of ( f (Ψ(i))/g(Ψ(i)))pa(Ψ(i)), i = 1, . . . , n, is the conditional
Monte Carlo estimator of P(L > x,Y ∈ S0). The sample average of qs(Ψ(i))w(i)I(L(i) > x), i = 1, . . . , n,
is a two-step importance sampling estimator of P(L > x,Y ∈ S1).

Suppose that the typical occurrence of tail loss over the threshold x corresponds to the events that
heavy obligors default simultaneously, i.e. the event {L > x} is mostly due to the event {Y ∈ S0}. Then,
the event {Y ∈ S1, L > x} is rare compared to the event {Y ∈ S0}. In this case, qs(Ψ(i))w(i)I(L(i) > x),
i = 1, . . . , n, in Equation (3.10) has a very low value compared to ( f (Ψ(i))/g(Ψ(i)))pa(Ψ(i)) of the
same equation in average. Thus, the estimator θ̂Sn is actually the conditional Monte Carlo estimator of
Pr{L > x} in this case, and may have a lower variance than θ̂Tn .

To compare the estimators θ̂Tn and θ̂Sn in terms of variance, we consider the case that the same
importance pdf g(ψ) for Ψ is adopted in both estimators, and assume that the same q(y|ψ) and the
corresponding q̃(y|ψ) defined in Equation (3.5) are adopted as the importance pmf of Y in θ̂Tn and in
θ̂Sn , respectively. It follows from Equation (2.11) that the variance of θ̂Tn is given by

VQ
[
θ̂Tn

]
=

1
n

VQ [w(Ψ,Y)I(L > x)] .

By conditioning on Ψ, we have

VQ [w(Ψ,Y)I(L > x)] = Vg

[
Eq [w(Ψ,Y)I(L > x)|Ψ]

]
+ Eg

[
Vq [w(Ψ,Y)I(L > x)|Ψ]

]
.

Since w(Ψ,Y) = ( f (Ψ)/g(Ψ))r(Y|Ψ) and Eq [r(Y|Ψ)I(L > x)|Ψ] = Ep[I(L > x)|Ψ], the above equa-
tion is converted to

VQ [w(Ψ,Y)I(L > x)] = Vg

[
f (Ψ)
g(Ψ)

p(L > x|Ψ)
]
+ Eg

[
Vq [w(Ψ,Y)I(L > x)|Ψ]

]
, (3.11)

where p(L > x|Ψ) = Ep[I(L > x)|Ψ].
The following proposition gives a representation of V[θ̂Sn ].

Proposition 2. The variance of θ̂Sn is decomposed as:

V
[
θ̂Sn

]
=

1
n

{
Vg

[
f (Ψ)
g(Ψ)

p(L > x|Ψ)
]
+ Eg

[
Vq [w(Ψ,Y)I(Y ∈ S1, L > x)|Ψ]

]}
− 1

n
EQ

[
qa(Ψ)w(Ψ,Y)2I(Y ∈ S1, L > x)

]
,
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where qa(ψ) =
∏m

j=1 q j(ψ).

Proof: For simplicity of presentation, we define θ(ψ, y) as:

θ(ψ, y) =
f (ψ)
g(ψ)

{pa(ψ) + qs(ψ)r(y|ψ)I(L > x)} , ψ ∈ Rd, y ∈ {0, 1}d. (3.12)

The number of n independent replications of θ(ψ, y) constitute the summands of Equation (3.10).
Then, it follows that

VQ̃
[
θ̂Sn

]
=

1
n

VQ̃ [θ(Ψ,Y)] .

By conditioning on the value of Ψ, we have

VQ̃ [θ(Ψ,Y)] = Vg

[
Eq̃ [θ(Ψ,Y)|Ψ]

]
+ Eg

[
Vq̃ [θ(Ψ,Y)|Ψ]

]
. (3.13)

From Equations (3.7) and (3.12), we can see that

Eq̃ [θ(Ψ,Y)|Ψ] =
f (Ψ)
g(Ψ)

Ep[I(L > x)|Ψ],

which gives a form of the first term in the right hand side of Equation (3.13) as:

Vg

[
Eq̃ [θ(Ψ,Y)|Ψ]

]
= Vg

[
f (Ψ)
g(Ψ)

Ep[I(L > x)|Ψ]
]
. (3.14)

From Equation (3.12), we also have that

Vq̃ [θ(Ψ,Y)|Ψ] = qs(Ψ)2Vq̃ [w(Ψ,Y)I(L > x)|Ψ] . (3.15)

Note that for i = 1, 2, . . . ,

Eq̃

[
w(Ψ,Y)iI(L > x)|Ψ

]
=

Eq

[
w(Ψ,Y)iI(Y ∈ S1, L > x)|Ψ

]
qs(Ψ)

,

which gives

Vq̃ [w(Ψ,Y)I(L > x)|Ψ] =
Eq

[
w(Ψ,Y)2I(Y ∈ S1, L > x)|Ψ

]
qs(Ψ)

−
(

Eq [w(Ψ,Y)I(Y ∈ S1, L > x|Ψ)]
qs(Ψ)

)2

.

Since qa(Ψ) + qs(Ψ) = 1, it follows from the above equation that

qs(Ψ)2Vq̃ [w(Ψ,Y)I(L > x)|Ψ]

= qs(Ψ)Eq

[
w(Ψ,Y)2I(Y ∈ S1, L > x)|Ψ

]
− Eq [w(Ψ,Y)I(Y ∈ S1, L > x)|Ψ]2

= Vq [w(Ψ,Y)I(Y ∈ S1, L > x)|Ψ] − qa(Ψ)Eq

[
w(Ψ,Y)2I(Y ∈ S1, L > x)|Ψ

]
.

By applying the above equation to Equation (3.15), we have that the conditional variance of θ(Ψ,Y)
given Ψ is as follows:

Vq̃ [θ(Ψ,Y)|Ψ] = Vq [w(Ψ,Y)I(Y ∈ S1, L > x)|Ψ] − qa(Ψ)Eq

[
w(Ψ,Y)2I(Y ∈ S1, L > x)|Ψ

]
.
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Then, the last term of Equation (3.13) is represented as follows:

Eg

[
Vq̃ [θ(Ψ,Y)|Ψ]

]
= Eg

[
Vq [w(Ψ,Y)I(Y ∈ S1, L > x)|Ψ]

]
− EQ

[
qa(Ψ)w(Ψ,Y)2I(Y ∈ S1, L > x)

]
.

Combining the above equation with Equations (3.13) and (3.14) completes the proof. 2

From Proposition 2 and Equation (3.11), we derive an inequality on the difference between V[θ̂Tn ]
and V[θ̂Sn ] as:

V
[
θ̂Tn

]
− V

[
θ̂Sn

]
≥ 1

n

{
Eg

[
Vq [w(Ψ,Y)I(L > x)|Ψ] − Vq [w(Ψ,Y)I(Y ∈ S1, L > x)|Ψ]

]}
. (3.16)

In Equation (3.16), the term Vq[w(Ψ,Y)I(L > x)|Ψ] − Vq[w(Ψ,Y)I(Y ∈ S1, L > x)|Ψ] is converted as
follows:

Vq [w(Ψ,Y)I(L > x)|Ψ] − Vq [w(Ψ,Y)I(Y ∈ S1, L > x)|Ψ]

=

(
f (Ψ)
g(Ψ)

)2 (
Vq [r(Y|Ψ)I(L > x)|Ψ] − Vq [r(Y|Ψ)I(Y ∈ S1, L > x)|Ψ]

)
.

Since I(L > x) = I(Y ∈ S0) + I(Y ∈ S1, L > x), we have

Vq [r(Y|Ψ)I(L > x)|Ψ] − Vq [r(Y|Ψ)I(Y ∈ S1, L > x)|Ψ]
= Vq [r(Y|Ψ)I(Y ∈ S0)|Ψ] + 2Cov(r(Y|Ψ)I(Y ∈ S0), r(Y|Ψ)I(Y ∈ S1, L > x)|Ψ).

The events {Y ∈ S0} and {Y ∈ S1, L > x} are mutually exclusive, which implies I(Y ∈ S0)I(Y ∈
S1, L > x) = 0. Then, the covariance term in the above equation is computed to be −pa(Ψ)Ep[I(Y ∈
S1, L > x)|Ψ]. Then, it follows that

Vq [r(Y|Ψ)I(L > x)|Ψ] − Vq [r(Y|Ψ)I(Y ∈ S1, L > x)|Ψ]
= Vq [r(Y|Ψ)I(Y ∈ S0)|Ψ] − 2pa(Ψ)Ep[I(Y ∈ S1, L > x)|Ψ].

We consider the case that the event {Y ∈ S1, L > x} is rare compared to the event {Y ∈ S0}, i.e.
Ep[I(Y ∈ S1, L > x)|Ψ] is near 0, and 2pa(Ψ)Ep[I(Y ∈ S1, L > x)|Ψ] is negligible compared to
Vq [r(Y|Ψ)I(Y ∈ S0)|Ψ]. Then, the above equation says that, in this case, Vq [r(Y|Ψ)I(L > x)|Ψ] ≥
Vq [r(Y|Ψ)I(Y ∈ S1, L > x)|Ψ]. Then, we can see from Equation (3.16) that V[θ̂Tn ] ≥ V[θ̂Sn ] (i.e., the
proposed scheme works in this case).

3.2. The proposed scheme for the estimation of the expected shortfall

The following proposition gives a representation of EP[I(L > x)L] in terms of a pdf g(ψ) for Ψ and
the conditional pmf q̃(y|ψ) for Y given Ψ = ψ. The proposition tells us how to estimate the expected
shortfall via an importance sampling of (Ψ,Y) from the probability measure Q̃.

Proposition 3.

EP[I(L > x)L] = EQ̃

[
f (Ψ)
g(Ψ)

pa(Ψ)l(Ψ) + qs(Ψ)w(Ψ,Y)I(L > x)L
]
,

where l(Ψ) =
∑k

j=1 c j +
∑m

j=k+1 c j p j(Ψ).
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Proof: Equation (3.3) says that the random variable I(L > x)L is decomposed as:

I(L > x)L = I(Y ∈ S0)L + I(Y ∈ S1, L > x)L,

which gives

EP[I(L > x)L] = EP[I(Y ∈ S0)L] + EP[I(Y ∈ S1, L > x) L]. (3.17)

It follows from Equation (3.2) that

Ep[I(Y ∈ S0)L|ψ] = Ep

I(Y ∈ S0)

 k∑
i=1

c j +

m∑
i=k+1

c jY j


∣∣∣∣∣∣ψ

 .
The event of {Y ∈ S0} depends on only Y1,Y2, . . . , Yk, and the r.v.

∑m
j=k+1 c jY j depends on only

Yk+1, . . . ,Ym. In the Bernoulli mixture model, Y1,Y2, . . . ,Ym are conditionally independent when Ψ =
ψ is given. Thus, for a given Ψ = ψ, I(Y ∈ S0) and

∑m
j=k+1 c jY j are independent. Then, it follows that

Ep

I(Y ∈ S0)

 k∑
i=1

c j +

m∑
i=k+1

c jY j


∣∣∣∣∣∣ψ

 = Ep[I(Y ∈ S0)|ψ]Ep

 k∑
i=1

c j +

m∑
i=k+1

c jY j

∣∣∣∣∣∣ψ


= pa(ψ)l(ψ).

Since EP[I(Y ∈ S0)L] = E f [Ep[I(Y ∈ S0)L|Ψ]], the above equation says that

EP[I(Y ∈ S0)L] = E f
[
pa(Ψ)l(Ψ)

]
.

By choosing g(ψ) as the pdf of Ψ instead of f (ψ), it follows from the above equation that

EP[I(Y ∈ S0)L] = Eg

[
f (Ψ)
g(Ψ)

pa(Ψ)l(Ψ)
]
,

equivalently,

EP[I(Y ∈ S0)L] = EQ̃

[
f (Ψ)
g(Ψ)

pa(Ψ)l(Ψ)
]
. (3.18)

It follows from Equation (2.9) that we have the following representation of the last term of Equa-
tion (3.17):

EP[I(Y ∈ S1, L > x)L] = EQ[w(Ψ,Y)I(Y ∈ S1, L > x)L]
= Eg[Eq[w(Ψ,Y)I(Y ∈ S1, L > x)L|Ψ]].

By conditioning on the event {Y ∈ S1}, we have

Eq[w(Ψ,Y)I(Y ∈ S1, L > x)L|Ψ] = qs(Ψ)Eq [w(Ψ,Y)I(L > x)L|Y ∈ S1,Ψ] .

From the definition of q̃(y|ψ), we have

Eq[w(Ψ,Y)I(Y ∈ S1, L > x)L|Ψ] = qs(Ψ)Eq̃ [w(Ψ,Y)I(L > x)L|Ψ] ,



340 Jinyoung Kim, Sunggon Kim

which gives

EQ[w(Ψ,Y)I(Y ∈ S1, L > x)L] = Eg

[
qs(Ψ)Eq̃ [w(Ψ,Y)I(L > x)L|Ψ]

]
= EQ̃[qs(Ψ)w(Ψ,Y)I(L > x)L].

Then, we have

EP[I(Y ∈ S1, L > x)L] = EQ̃[qs(Ψ)w(Ψ,Y)I(L > x)L]. (3.19)

Applying Equations (3.18) and (3.19) to Equation (3.17), we complete the proof. 2

Suppose that we have samples (Ψ(1),Y(1)), . . . , (Ψ(n),Y(n)) from Q̃. Then, Proposition 3 says that
an importance sampling estimator of EP[I(L > x)L] is given by

η̂S
n =

1
n

n∑
i=1

 f
(
Ψ(i)

)
g
(
Ψ(i)) pa

(
Ψ(i)

)
l(i) + qs

(
Y(i)

)
w(i)I

(
L(i) > x

)
L(i)

 , (3.20)

where

l(i) =
k∑

j=1

c j +

m∑
j=k+1

c j p j

(
Ψ(i)

)
.

Then, the expected shortfall E[L|L > x] is estimated to be η̂S
n /θ̂

S
n .

3.3. The cross entropy method and exponential twisting for the proposed scheme

In Section 2.3, exponential twistings of p1(ψ), . . . , pm(ψ) are considered as importance default prob-
abilities of the obligors for given Ψ = ψ. To obtain the optimal value of the twisting parameter t,
Glasserman and Li (2005) used the property that the second moment of r(Y|ψ)I(L > x), which is an
unbiased estimator of p(L > x|ψ), is bounded above by exp{−2tx + 2 log ML(t|ψ)}. When E[L|ψ] > x,
minimizing the upper bound gives the pseudo-optimal value of t, which is given in Equation (2.17).
In the same manner, we show that Equation (2.17) also gives a pseudo-optimal value of the twisting
parameter t(ψ) in our proposed scheme when we adopt an exponential twisting of p j(ψ), j = 1, . . . ,m,
as the importance default probability of obligor j.

Since w(Y|ψ) = ( f (ψ)/g(ψ))r(Y|ψ), it follows from Equation (3.10) that

nVq̃

[
θ̂Sn |ψ

]
=

(
f (ψ)qs(ψ)

g(ψ)

)2

Vq̃[r(Y|ψ)I(L > x)|ψ]

=

(
f (ψ)qs(ψ)

g(ψ)

)2 (
Eq̃

[
r(Y|ψ)2I(L > x)|ψ

]
− Eq̃

[
r(Y|ψ)I(L > x)|ψ]2

)
. (3.21)

Note that qs(ψ)Eq̃[r(Y|ψ)I(L > x)|ψ] = Ep[I(L > x,Y ∈ S1)|ψ], which does not depend on the choice
of q(y|ψ). Since r(Y|ψ) = exp{−tL + log ML(t|ψ)}, the value of t minimizing Vq̃[θ̂Sn |ψ] is the same as
the t minimizing Eq̃[r(Y|ψ)2I(L > x)|ψ]. An upper bound of the latter term is given by

Eq̃

[
r(Y|ψ)2I(L > x)|ψ

]
= Eq̃

[
exp{−2tL + 2 log ML(t|ψ)}I(L > x)|ψ]

≤ exp
{−2xt + 2 log ML(t|ψ)

}
.
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Algorithm 1 Importance sampling with splitting

Require: x, p̄1, p̄2, . . . , p̄m, c1, c2, . . . , cm, p1(ψ), p2(ψ) . . . , pm(ψ), f (ψ;µ)
Ensure: P̂(L > x), ÊP[L|L > x]

1: Sample Ψ(1), . . . ,Ψ(M) independently from f (ψ;µ)
2: for i=1 to M do
3: Find the value of t(Ψ(i)) defined in Equation (2.17)
4: Sample Y(i) from q̃(y|Ψ(i))
5: Compute pa(Ψ(i)) and qs(Ψ(i))
6: Compute L(i) = L(Y(i)) and r(i) = r(Y(i)|Ψ(i))
7: end for
8: Set ν∗ as the solution of the following stochastic maximization problem:

maximize
ν

1
M

M∑
i=1

{
pa

(
Ψ(i)

)
+ qs

(
Ψ(i)

)
r(i)I

(
L(i) > x

)}
log f

(
Ψ(i); ν

)
(3.22)

9: Set g(ψ) = f (ψ; ν∗)
10: Sample Ψ(1), . . . ,Ψ(n) independently from g(ψ)
11: for i=1 to n do
12: Find the value of t(Ψ(i)) defined in Eq. (2.17)
13: Sample Y(i) from q̃(y|Ψ(i)).
14: Compute pa(Ψ(i)) and qs(Ψ(i))
15: Compute l(i) =

∑k
j=1 c j +

∑m
j=k+1 c j p jΨ

(i))
16: Compute L(i) = L(Y(i)) and w(i) = w(Y(i)|Ψ(i))
17: end for
18: Compute

θ̂Sn =
1
n

n∑
i=1

 f
(
Ψ(i)

)
g
(
Ψ(i)) pa

(
Ψ(i)

)
+ qs

(
Ψ(i)

)
w(i)I

(
L(i) > x

)
19: Compute

η̂S
n =

1
n

n∑
i=1

 f
(
Ψ(i)

)
g
(
Ψ(i)) pa

(
Ψ(i)

)
l(i) + qs

(
Ψ(i)

)
w(i)I

(
L(i) > x

)
L(i)


20: Return

P̂(L > x) = η̂S
n , Ê[L|L > x] =

η̂S
n

θ̂Sn
.

The value of t(ψ) given in Equation (2.17) minimizes the last term in the above equation, and it is a
pseudo-optimal value of t. Then, for j = 1, . . . ,m, the same q∗j(ψ) = q j(t(ψ),ψ) as in Section 2.3 is
the optimal importance default probability of obligor j, and the importance pmf q̃(y|ψ) of Y ∈ S1 is
given by

q̃(y|ψ) =

∏m
j=1 q∗j(ψ)y j

(
1 − q∗j(ψ)

)1−y j

1 −∏k
j=1 q∗j(ψ)

, y ∈ S1.

As we have done in Section 2.4, we assume that Ψ has the pdf f (ψ;µ), and confine the parametric
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family of the importance pdf of Ψ to F = { f (ψ; ν)] in Equation (2.20). Using the cross entropy
method described in Section 2.4, we can find the optimal value of ν. Note that p(L > x|ψ) = pa(ψ) +
qs(ψ)Eq̃[r(Y|ψ)I(L > x)|ψ], and that

P(L > x) =
∫ (

pa(ψ) + qs(ψ)Eq̃
[
r(Y|ψ)I(L > x)|ψ])

f (ψ;µ)dψ.

Then, the integrand (pa(ψ) + qs(ψ)Eq̃[r(Y|ψ)I(L > x)|ψ]) f (ψ;µ) in the above integral is the zero-
variance pdf for the estimation of P(L > x) up to a constant. As it is explained in Section 2.4, the
optimal value of ν can be found by solving the following maximization problem:

ν∗ = argmax
ν

∫ {
pa(ψ) + qs(ψ)Eq̃

[
r(Y|ψ)I(L > x)|ψ]}

log f (ψ; ν) f (ψ;µ) dψ. (3.23)

Suppose that we have samples (Ψ(i),Y(i)), i = 1, 2, . . . ,M, from the distribution f (ψ;µ)q̃(y|ψ). Then,
the stochastic optimization problem corresponding to Equation (3.23) is that

maximize
ν

1
M

M∑
i=1

(
pa

(
Ψ(i)

)
+ qs

(
Ψ(i)

)
r
(
Y(i)|Ψ(i)

)
I
(
L(i) > x

))
log f

(
Ψ(i); ν

)
. (3.24)

Algorithm 1 shows how to obtain θ̂Sn and η̂S
n by applying the cross entropy method and the exponential

twisting described above.
Now, we consider the case that Ψ is a d-dimensional multivariate normal vector with mean µ and

variance-covariance matrix Σ. We confine the family of the possible importance sampling distribution
of Ψ to the family of the d-dimensional normal distributions with same variance-covariance matrix Σ,
i.e.

F =
{
ϕd(ψ; ν,Σ) : ν ∈ Rd

}
,

where ϕd(ψ; ν,Σ) is the p.d.f of the d-dimensional normal distributions with mean ν and the variance-
covariance matrix Σ. In this case, the solution of the optimization problem Equation (3.24) can be
found analytically (Chan and Kroese, 2010) as follows:

ν∗ =

∑M
i=1

(
pa

(
Ψ(i)

)
+ qs

(
Ψ(i)

)
r
(
Y(i)|Ψ(i)

)
I
(
L(i) > x

))
Ψ(i)∑M

i=1 pa
(
Ψ(i)) + qs

(
Ψ(i)) r

(
Y(i)|Ψ(i)) I

(
L(i) > x

) . (3.25)

Now, Equation (3.22) in Algorithm 1 is replaced with Equation (3.25).

4. Numerical results

In this section, we give some numerical results on the performance of the proposed method. We
estimate numerically tail loss probabilities over various thresholds and their corresponding estimated
values of expected shortfalls. Crude Monte Carlo, two step importance sampling with cross entropy
method and exponential twisting described in Section 2, and our proposed scheme are used for the
estimation of each target value, respectively. We call the methods CMC, CE-ET, and IS-Sp in order. In
obtaining of an estimate, the efficiency of a Monte Carlo simulation is taken as inversely proportional
to the product of the sampling variance of the estimate and the simulation time to get the estimate
(Glynn and Whitt, 1992). We compare the performance of the methods CMC, CE-ET, and IS-Sp in
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terms of the product of the sampling variance and the simulation time. The smaller the value is, the
better the performance is.

For the mixing distribution in the Bernoulli mixture model, we consider the probit-normal mix-
ing distribution (Frey and McNeil, 2003, p.354). In the model, the factor vector Ψ follows the d-
dimensional standard normal distribution Nd(0,Σ) with a correlation matrix Σ, and p j(ψ) has the
following form:

p j(ψ) = Φ
(
a′jψ + b j

)
, j = 1, . . . ,m,

where Φ is the c.d.f. of the standard normal, a j is a d-dimensional constant vector to adjust the effect
of the factor vector on the conditional default probability of obligor i. By setting b j as follows:

b j =
√

1 + a′jΣa jΦ
−1

(
p̄ j

)
, j = 1, . . . ,m,

the marginal default probability condition of Equation (2.7) is satisfied.
In the numerical study, we set the correlation matrix Σ as

σ =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

 ,
and the constant vector as

a j =

[1
3

1
3

1
3

]
, j = 1, . . . ,m.

The number of obligors, m, are set to be 1000. The marginal default probabilities of obligors are
randomly generated from the uniform distribution on [0, 0.02]. The once generated values are used
for all simulations, i.e. the marginal default probabilities of obligors do not change from simulation
to simulation.

Two sets of exposures of obligors are randomly generated. In order to get sets of heavily skewed
exposures, we generate one set of exposures from Pareto distribution with shape parameter 0.8, and
the other set from Pareto distribution with shape parameter 1.2. The former set of exposures contains
larger extreme values and more skewed to the right. The generated exposures are also used for all
simulations. For each set of exposures, we obtain the tail loss probabilities and the expected shortfalls
over 4 different thresholds. The kth threshold xk, k = 1, . . . , 4, is set to be as:

xk =

k∑
j=1

c j − 0.1,

where c1, c2, . . . , cm are assumed to be in their descending order. Then, we have x1 < · · · < x4. If the
first k obligors default, then the loss is over xk, k = 1, . . . , 4. It means that the threshold xk corresponds
to the case that the set of heavy obligors is {1, . . . , k}.

To obtain the tail loss probability θ̂ over the threshold xk, we generate n = 105 of the default
vectors Y1, . . . ,Yn, and compute the corresponding losses L(1), . . . , L(n) with each of the methods,
CMC, CE-ET, and IS-Sp. Table 1 shows the value of xk, k = 1, . . . , 4, and the cumulative probability
of xk (i.e., the probability of which quantile is xk). Exact values of the cumulative probabilities are
hard to compute, and they are estimated to be (1 − θ̂T )’s, in which the tail loss probability θ̂T over
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Table 1: Thresholds, cumulative probabilities, and corresponding simulation times in the cases of α = 0.8 and
α = 1.2

α k Threshold Cumulative Simulation time (sec.)
probability CMC CE-ET IS-Sp

(a) 0.8

1 11027.22 98.590% 14.53 70.12 82.58
2 16525.18 99.784% 13.91 70.57 79.20
3 20669.69 99.935% 13.95 72.28 80.75
4 23529.80 99.973% 14.30 72.21 91.99

(b) 1.2

1 293.74 95.290% 13.63 43.86 46.10
2 518.34 98.170% 13.55 42.71 43.60
3 717.20 99.086% 13.60 41.26 43.82
4 884.89 99.453% 13.49 44.05 46.64

Table 2: Estimation of the tail loss probabilities for various values of thresholds in the cases of α = 0.8 and
α = 1.2

α k θ̂T
S.E Time ∗ Variance

CMC CE-ET IS-Sp CMC CE-ET IS-Sp

(a) 0.8

1 1.41×10−2 3.67×10−4 4.69×10−5 1.65×10−5 1.96×10−6 1.54×10−7 2.25×10−8

2 2.16×10−3 1.48×10−4 9.50×10−6 7.40×10−6 3.04×10−7 6.36×10−9 4.28×10−9

3 6.52×10−4 7.55×10−5 3.66×10−6 3.05×10−6 7.95×10−8 9.70×10−10 7.51×10−10

4 2.71×10−4 4.58×10−5 1.89×10−6 1.23×10−6 3.00×10−8 2.57×10−10 1.39×10−10

(b) 1.2

1 4.71×10−2 6.71×10−4 1.86×10−4 1.62×10−4 6.13×10−6 1.52×10−6 1.22×10−6

2 1.83×10−2 4.19×10−4 8.12×10−5 8.03×10−5 2.38×10−6 2.82×10−7 2.81×10−7

3 9.14×10−3 3.02×10−4 4.40×10−5 4.35×10−5 1.24×10−6 8.00×10−8 8.29×10−8

4 5.47×10−3 2.31×10−4 2.77×10−5 2.72×10−5 7.19×10−7 3.39×10−8 3.46×10−8

Table 3: Estimation of the expected shortfalls for various values of thresholds in the cases of α = 0.8 and
α = 1.2

α k ̂E[L|L > x]
S.E Time ∗ Variance ratio

CMC CE-ET IS-Sp CMC CE-ET IS-Sp

(a) 0.8

1 1.33×104 3.71×102 4.15×101 1.66×101 2.00×106 1.21×105 2.27×104

2 1.98×104 1.36×103 8.06×102 6.32×102 2.57×107 4.59×105 3.16×105

3 2.37×104 3.18×103 1.27×102 1.05×102 1.41×108 1.17×106 9.00×105

4 2.63×104 5.68×103 1.75×102 1.14×102 4.61×108 2.21×106 1.21×106

(b) 1.2

1 5.56×102 9.19 1.82 1.54 1.15×103 1.45×102 1.09×102

2 8.34×102 20.71 3.15 3.04 5.81×103 4.25×102 4.02×102

3 1.06×103 37.06 4.37 4.33 1.87×104 7.89×102 8.22×102

4 1.24×103 55.67 5.49 5.44 4.18×104 1.33×103 1.38×103

each threshold is given in Table 2. For each combination of the threshold, the sampling method,
and the shape parameter, Table 1 also shows the simulation times to get the estimates of the tail loss
probability and the expected shortfall which appear in Tables 2 and 3, respectively.

Table 1 shows that the simulation times of CE-ET and IS-Sp are much longer than those of CMC
in each simulation with the same threshold and α. However, the simulation times of IS-Sp are only
somewhat longer than those of CE-ET in the case of α = 0.8, and the difference of two times are less
than 3 seconds (or less than 10%) in the case of α = 1.2. This means that finding the optimal twisting
parameter t(ψ) in Equation (2.17) is the bottleneck of CE-ET method and also IS-Sp method because
the conditional default probabilities are not twisted in CMC method. This also explains the difference
of simulation times of CE-ET (and also IS-Sp) between the cases of α = 0.8 and α = 1.2. Since the
exposures in the case of α = 0.8 are spread more widely than α = 1.2, it needs more steps to find the
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optimal twisting parameter numerically. We also can see that for a given Ψ = ψ, the generation of
the default vector Y from q̃(y|ψ) requires only a little additional time compared to the generation from
q∗(y|ψ), and that the additional time is short in the case of α = 1.2.

For each set of exposures, the estimated tail loss probabilities over the thresholds specified in
Table 1 and the corresponding standard errors are given in Table 2. It also shows the time ∗ variance
for each estimation. The simulation time taken to get an estimate is inversely proportional to the
variance of the estimate. Equations (2.2), (2.11), and (3.10) say that the variances of the estimators
in the equations are proportional to 1/n since each estimator in the equations is an average of n i.i.d.
random variables. The time taken to generate the random variables is clearly linear with n, while the
time taken to compute the average of the generated random variables is negligible compared to the
time of generation of the random variables. Since the total simulation time to get an estimate consists
of the former and the latter times, the value of ‘time*variance’ of an estimate is nearly constant with
respect to n. It implies that to reduce the variance of an estimator by r times, r times more simulation
time is required. Suppose that the time ∗ variance of an estimate is m times larger than that of the
other. In order to make the variance of the two estimators the same, the required simulation time of
the former is m times larger than the latter.

In Table 2(a), we can see that CE-ET and IS-Sp have about 100 times less value of time ∗ variance
compared to CMC in the case of α = 0.8. CE-ET and IS-Sp are about 100 times faster than CMC in
terms of simulation time to obtain the same estimation error (i.e., the variance of the estimate). We
can see that the time ∗ variances of CE-ET are from 1.3 to 6.8 times those of IS-Sp method, which
means that IS-Sp is more efficient than CE-ET in the estimation of the tail loss probability.

Table 2(b) says that the performances of the methods have different behavior in the case of α = 1.2.
In this case, CE-ET and IS-Sp have about 10 times less value of time ∗ variance compared to CMC.
The time ∗ variances of CE-ET and IS-Sp have the similar values to each other for k > 1. Therefore,
there is no need to use IS-Sp instead of CE-ET for k > 1. When k = 1, IS-Sp method shows the better
performance than CE-EC.

Tables 3(a) and (b) show the estimated expected shortfalls over the thresholds shown in Table 1
and the corresponding standard errors in the cases of α = 0.8 and α = 1.2, respectively. The values
of time ∗ variances for the estimated values are also shown. The same conclusion as the case of the
tail loss probabilities in Table 2 are obtained. CE-ET and IS-Sp are faster than CMC in both cases of
α = 0.8 and α = 1.2. In the former case, IS-Sp is more efficient than CE-ET in the estimation of the
expected shortfall. In the latter case, there is no need to use IS-Sp instead of CE-ET for k > 1. When
k = 1, IS-Sp method shows the better performance than CE-EC.

Tables 2 and 3 say that IS-Sp shows better performance than CE-EC as well as CMC for the case
of α = 0.8. However, the case of α = 1.2, IS-Sp and CE-EC have the similar efficiency for k > 1. In
the case of α = 0.8, IS-Sp has better time efficiency than CE-EC with various values of thresholds;
however this conclusion is only valid with low thresholds in the case of α = 1.2. It implies that
the proposed method may show better performance in the case of heavily skewed set of exposures,
especially when the fitted value of α is less than 1.

5. Conclusion

We proposed an importance sampling scheme to estimate the tail loss probability over a threshold
and the corresponding expected shortfall. The proposed scheme is for the Bernoulli mixture model
with heavily skewed exposures. In the model, the typical occurrence of tail loss over a high thresh-
old corresponds to the events that small number of the heavy obligors default simultaneously. In the
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proposed scheme, the sample space of the default events is split into two subspaces, one of which
consists of the described typical events. We developed a conditional Monte Carlo to get estimates of
tail loss probability and the expected shortfall due to the events of this subspace, while an importance
sampling was proposed for the estimation of the risk values due to the default events of the other sub-
space. The proposed scheme is a type of two-step importance sampling. For choosing optimally the
importance distribution of the factor variables and the importance default probabilities of the obligors
in the proposed scheme, we proposed how to apply the cross entropy method and the exponential
twisting. We compared the proposed scheme and the two-step importance sampling without splitting
of sample space in terms of variance, and discussed that the proposed scheme may work in the case
that simultaneous defaults of small number of heavy obligors occur the tail loss over the threshold.
In numerical study, we showed that the proposed scheme might be efficient compared to the two-step
importance sampling without splitting in the described case.

The proposed scheme can be extended to the case of random exposures. In this case, the set of
heavy obligors changes according to the set of exposures, and the typical default event is a random
vector, while it is a fixed vector in the case of constant exposures. The approach to analyze the problem
may be the same as that of constant exposures.
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