• Title/Summary/Keyword: heater

Search Result 1,744, Processing Time 0.031 seconds

An Experimental Study on the Application in-situ of Curing Method by Planar Surface Heater for Cold Weather Concreting (전기발열시트 표면가열 양생공법의 현장적용 연구)

  • 김형래;조호규;김찬수;지남용
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.19-22
    • /
    • 2003
  • The purpose of this study is to analyze the curing effect of planar surface heater for concreting in cold weather. Some experiments were conducted to evaluate the temperature history of concrete structures cured with heating sheets. Results are as follows ; (1) The temperature of concrete showed continuously rising trend with the heating by planar surface heater under the cold environmental condition of 3~-12$^{\circ}C$. And after about 24 hours the maximum temperature of concrete was reached at 25~3$0^{\circ}C$. (2) The temperature of slab concrete heated by planar surface heater of 130W/$m^2$ was at least $25^{\circ}C$ higher than that of an exterior air, and the curing performance was much more effective than heating by hot wind machine. (3) Through the curing by planar surface heater for 48 hours, the concrete maturity of about 1.5 times to heating by hot wind machine was acquired.

  • PDF

Fault Detection for Ceramic Heater in CVD Equipment using Zero-Crossing Rate and Gaussian Mixture Model (영교차율과 가우시안 혼합모델을 이용한 박막증착장비의 세라믹 히터 결함 검출)

  • Ko, JinSeok;Mu, XiangBin;Rheem, JaeYeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.67-72
    • /
    • 2013
  • Temperature is a critical parameter in yield improvement for wafer manufacturing. In chemical vapor deposition (CVD) equipment, crack defect in ceramic heater leads to yield reduction, however, there is no suitable ceramic heater fault detection system for conventional CVD equipment. This paper proposes a short-time zero-crossing rate based fault detection method for the ceramic heater in CVD equipment. The proposed method measures the output signal ($V_{pp}$) of RF filter and extracts the zero-crossing rate (ZCR) as feature vector. The extracted feature vectors have a discriminant power and Gaussian mixture model (GMM) based fault detection method can detect fault in ceramic heater. Experimental results, carried out by measured signals provided by a CVD equipment manufacturer, indicate that the proposed method detects effectively faults in various process conditions.

Design, Simulation, and Optimization of a Meander Micro Hotplate for Gas Sensors

  • Souhir, Bedoui;Sami, Gomri;Hekmet, Charfeddine Samet;Abdennaceur, Kachouri
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.189-195
    • /
    • 2016
  • Micro Hotplate (MHP) is the key component in micro-sensors, particularly gas sensors. Indeed, in metal oxide gas sensors MOX, micro-heater is used as a hotplate in order to control the temperature of the sensing layer which should be in the requisite temperature range over the heater area, so as to detect the resistive changes as a function of varying concentration of different gases. Hence, their design is a very important aspect. In this paper, we have presented the design and simulation results of a meander micro heater based on three different materials - platinum, titanium and tungsten. The dielectric membrane size is 1.4 mm × 1.6 mm with a thickness of 1.4 μm. Above the membrane, a meander heating film was deposed with a thickness of 100 nm. In order to optimize the geometry, a comparative study by simulating two different heater thicknesses, then two inter track widths has also been presented. Power consumption and temperature distribution were determined in the micro heater´s structure over a supply voltage of 5, 6, and 7 V.

Study of Life Prediction and Failure Mechanisms of Cramic Heater for Home Appliance (가전 제품용 세라믹 히터의 수명 및 고장 원인에 대한 연구)

  • Choi, Hyoungseuk
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.355-361
    • /
    • 2017
  • Purpose: The purpose of this research is to establish the life test method for ceramic heater and identify the failure mechanisms. Methods: We do accelerated life test in the condition of thermal shock and failure analysis for failed samples. Conclusion: The main failure mechanisms of ceramic heater are identified as overstress failure mechanisms as results of failure analysis and the shape parameters of weibull distribution by accelerated life test are identified as 0.8, 1.2 and 0.4 each at $400^{\circ}C$, $600^{\circ}C$ and $900^{\circ}C$. At $900^{\circ}C$, the shape parameter 0.4 means that It is exactly initial failure caused that the stress exceeds the strength of ceramic heater highly and the shape parameters 0.8, 1.2 at $400^{\circ}C$, $600^{\circ}C$ means that the shape parameters are around 1.0 so that the main failure mechanism is overstress failure which is same result as failure analysis. It means that the appropriate life test method for ceramic heater is reliability qualification test method rather than accelerated life test.

Basic Operational Characteristics for Developments of Solar Air Heater for Air Heating in Winter (태양열 이용 난방용 공기가열기 개발을 위한 기초 운전 특성)

  • Kim, Jong-Ryeol;Hong, Boo-Pyo;Woo, Jong-Soo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.87-94
    • /
    • 2011
  • To develop the solar air heater, prototype of solar heater with test room set up on the roof of test chamber and operation characteristics were examined with solar radiation. Air induced from outside was supplied by a blower and also heated air was supplied to the test chamber(size of 1,000mm(inwidth)*2,000mm(in length)*2,000mm(in depth)) established already for performance. It was clear that almost 30% of solar radiation was converted into effective heating energy at maximum and the highest air temperature was $46^{\circ}C$, and thus solar air heater in winter could be used as an possible alternative heating system in building. Furthermore, heat energy obtained from solar air heater can be applied to regenerate absorber in the solar desiccant cooling system.

Thermal Conductivity Analysis of Heating Rollers for Cable Low Dust POD Production (저분진 케이블 POD 생산을 위한 히팅 롤러의 열전도 분석)

  • Song, Young-Jun;Lim, Jong-Hak;Byun, Young-il;Hong, Seong-Min;Jeong, Young-Hwan;Park, Jang-Yong;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2022
  • The heating roller of an actual pulse output device (POD) production facility is composed of a steel roller and a rubber roller. The time to reach a specific temperature and the temperature distribution on the roller surface were analyzed and compared according to the change in the number of cartridge heaters inside the heating roller. In this analysis, a steady-state thermal analysis of a steel roller was performed for the cases of a 5-cartridge heater and 9-cartridge heater. Finite element analysis was applied with reference to the surface temperature data of the heating roller during operation and the calorific value of the cartridge heater. Using the 9-cartridge heater, faster target temperature achievement and more uniform temperature distribution were confirmed than for the 5-cartridge heater.

Study on Fire Hazard Analysis along with Heater Use in the Public Use Facility Traditional Market in Winter (겨울철 다중이용시설인 전통재래시장 난방기구 사용에 따른 화재 위험성 분석에 관한 연구)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.4
    • /
    • pp.583-597
    • /
    • 2014
  • Fire caused by heater has various causes as many as the types of heater. also, lots of damage of human life and property loss are caused, since annually continuous fire accident by heater in traditional market is frequently occurring. There are not many cases of fire due to heater in most of residential facilities such as general house, apartments, etc., because they are supplied with heating boiler, however the restaurant, store and office of the market, sports center, factory, workplace, etc. still use heater, e.g. oilstove, electric heater, etc., so that they are exposed to fire hazard. Also, when investigating the number of fire due to heater, it was analyzed to occur in order of home boiler, charcoal stove, oilstove, gas heater/stove, electric stove/heater, the number of fire per human life damage was analyzed in order of gas heater/stove, oil heater/stove, electric heater/stove, briquette/coal heater. Also, gas and oil related heater were analyzed to have low frequency, however, with high fire intensity. Therefore, this research aimed at considering more scientific fire inspection and identification approach by reenacting and reviewing fire outbreak possibility caused by combustibles' contact and conductivity under the normal condition and abnormal condition in respect of ignition hazard, i.e. minimum ignition temperature, carbonization degree and heat flux along with it, due to oilstove and electric stove, which are still frequently used in public use facility, traditional market, and, of which actual fire occurrence is the most frequent. As the result of reenact test, ignition hazard appeared very small, as long as enough heat storage condition is not made in both test objects(oilstove/electric stove), however carbonization condition was analyzed to be proceeded per each part respectively. Eventually, transition to fire is the ignition due to heat storage, so that it was analyzed to ignite when minimum heat storage temperature condition of fire place is over $500^{\circ}C$. Particularly, in case of quartz pipe, the heating element of electric stove, it is rapidly heated over the temperature of $600^{\circ}C$ within the shortest time(10sec), so that the heat flux of this appears 6.26kW/m2, which was analyzed to result in damage of thermal PVC cable and second-degree burn in human body. Also, the researcher recognized that the temperature change along with Geometric View Factor and Fire Load, which display decrease of heat, are also important variables to be considered, along with distance change besides temperature condition. Therefore, the researcher considers that a manual of careful fire inspection and identification on this is necessary, also, expects that scientific and rational efforts of this research can contribute to establish manual composition and theoretical basis on henceforth fire inspection and identification.

Investigation of Turbulent Flow Effect in Segmented Arc Heater (아크히터 내부의 난류 효과에 대한 고찰)

  • Lee, Jeong-Il;Kim, Kyu-Hong;Kim, Chong-Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2005
  • Flows in segmented arc-heaters have been calculated for prediction of experimental operating condition or for analysis and design of arc-heater itself. Some researchers succeeded in calculating accurately inner flows of a arc-heater, but could not made mathematical models which satisfy various operating conditions for many arc-heaters. this study is forced on turbulence for the generality of mathematical model. Instead of algebraic turbulence models which are frequently used for calculating inner flow of arc-heater, two equation turbulent models are used. Prediction results agree well with experiment data and it was confirmed that $k-\varepsilon$ two equation turbulence model is appropriate for a flow in an arc heater throughout extensive numerical testing.

Investigation of Structural Reliability on Solder Joint According to Heater Set-point of the Lunar Lander (달 착륙선의 히터 작동온도 설정에 따른 솔더 접합부의 구조적 신뢰성 분석)

  • Jeon, Young-Hyeon;Park, Tae-Yong;Lee, Jang-Joon;Kim, Jung-Hoon;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.167-174
    • /
    • 2018
  • The heater is applied to the lunar lander for securing its survivability under severe lunar thermal environment during 14 days of night time. For this, the heater on/off set-points shall be determined to minimize the power consumption due to the limited power generation of lunar lander during night time. In addition, the temperature changes of the lander according to the heater set-point is also an important factor because it is related to thermo-mechanical reliability on solder joint of on-board electronics. In this study, we investigated thermo-mechanical reliability on solder joint according to the heater set-point by using commercial reliability and a life prediction tool of Sherlock based on the thermal analysis results of lunar lander that is a year of the mission lifetime.

A study on Optimal Design for the Inductance and Coreloss of Plate Type Induction Heater for Electric Vehicle (전기자동차용 판형 인덕션 히터의 인덕턴스 및 철손 최적설계 연구)

  • Kang, Jun-Kyu;Jo, Byoung-Wook;Kim, Ki-Chan
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.10
    • /
    • pp.425-430
    • /
    • 2018
  • The battery system of an electric vehicle suffers from the problem the battery output and the service life decrease at low temperature. A Positive Temperature Coefficient(PTC) heater is used for maintaining room temperature but is heavy due to a complicated insulation structure. The larger the weight is, the lower the fuel economy of the electric vehicle is. On the other hand a induction heater have a simple insulation structure, which is effective in weight reduction and has a rapid temperature rise. The induction heater consists of an LC resonance circuit. The larger the capacitance is, the higher the price and weight is. Therefore, the inductance should be increased to reduce the capacitance. Also, the main heat source of the induction heater is coreloss. So, it is important to optimize inductance and coreloss in terms of electromagnetic field design. In this paper, the inductance and the coreloss according to the change of the induction heater structure were optimized through the Taguchi method and Finite Element Method(FEM) simulation.