DOI QR코드

DOI QR Code

Investigation of Structural Reliability on Solder Joint According to Heater Set-point of the Lunar Lander

달 착륙선의 히터 작동온도 설정에 따른 솔더 접합부의 구조적 신뢰성 분석

  • Received : 2017.12.11
  • Accepted : 2018.01.11
  • Published : 2018.02.01

Abstract

The heater is applied to the lunar lander for securing its survivability under severe lunar thermal environment during 14 days of night time. For this, the heater on/off set-points shall be determined to minimize the power consumption due to the limited power generation of lunar lander during night time. In addition, the temperature changes of the lander according to the heater set-point is also an important factor because it is related to thermo-mechanical reliability on solder joint of on-board electronics. In this study, we investigated thermo-mechanical reliability on solder joint according to the heater set-point by using commercial reliability and a life prediction tool of Sherlock based on the thermal analysis results of lunar lander that is a year of the mission lifetime.

달 착륙선에는 14일에 이르는 밤 구간동안 극한의 열환경에서 생존하기 위한 열원공급을 목적으로 히터가 적용되며, 이 때 전력생성이 제한되는 착륙선의 소요전력을 최소화하는 히터 작동 온도 설정치가 결정되어야 한다. 또한 상기 온도 설정치에 따른 착륙선의 온도 변화는 탑재 전장품에 적용된 전자소자의 솔더 접합부에 대한 열기계적 신뢰성과 연관되는 중요한 설계인자이다. 본 논문에서는 임무수명이 1년인 달 착륙선의 열해석 결과를 토대로 상용 신뢰성 수명예측도구인 Sherlock을 활용하여 상기의 온도 설정치에 따른 솔더 접합부의 열 기계적 신뢰성을 검토하였다.

Keywords

References

  1. Heiken, G., Vaniman, D. and French, B. M., "Lunar Sourcebook: A User's Guide to the Moon", CUP Archive, Texas, USA, 1991.
  2. Zuliani, H., Oikawa, T. and Yoshida, K., "Thermal based Path Planning using Solar Orientation for a Lunar Micro Rover", 31th International Symposium on Space Technology and Science, 2017-i-10, 2017, pp. 1-6.
  3. Trask, N. J. and Rowan, L. C., "Lunar Orbiter Photographs: Some Fundamental Observations", Science 158.3808, Vol. 158, 1967, pp. 1529-1535. https://doi.org/10.1126/science.158.3808.1529
  4. Jeon, Y. H., Kim, H. S., Lim, I. O., Kim, Y. S., and Oh, H. U., "Mechanical Reliability Evaluation on Solder Joint of CCB for Compact Advanced Satellite", Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 45, No. 6, 2017, pp. 498-507. https://doi.org/10.5139/JKSAS.2017.45.6.498
  5. http://www.dfrsolutions.com
  6. Jeon, S. H., Kwon, Y. H., Kwon, H. A., Lee, Y. G., Lim, I. Y. and Oh, H. U., "Life Prediction of Failure Mechanisms of the CubeSat Mission Board using Sherlock of Reliability and Life Prediction Tools", Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 2, 2016, pp. 172-180. https://doi.org/10.5139/JKSAS.2016.44.2.172
  7. NASA APOLLO 11 MISSION REPORT, MSC-00171, Section 16.2.1.
  8. Vasavada, A. R., Bandfield, J. L., Greenhagen, B. T., Hayne, P. O., Siegler, M. A., Williams J. P. and Paige, D. A., "Lunar Equatorial Surface Temperatures and Regolith Properties from the Diviner Lunar Radiometer Experiment", Journal of Geophysical Research, Vol. 112, 2012, pp. 1-12.
  9. Grott, M., Knollenberg, J. and Krause, C., "Apollo Lunar Heat Flow Experiment Revisited: A Critical Reassessment of the In Situ Thermal Conductivity Determination", Journal of Geophysical Research: Planets, Vol. 115, 2010, pp. 1-11.
  10. Hanger, P., "Dynamic Thermal Modeling for Moving Objects on the Moon", Fakultat fur Maschinenwesen, 2013, pp. 1-222.
  11. Christie, R. J., Plachta, D. W. and Hasan, M. M., "Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage", NASA, 2007, pp. 1-19.
  12. Thermal Desktop User's Manual, Ver 5.8, C&R Technologies, Inc., Colorado, USA, May 2017.
  13. SINDA/FLUINT User's Manual, Ver 5.8, C&R Technologies, Inc., Colorado, USA, June 2015.
  14. Engerlmaier, W., "Fatigue Life Leadless Chip Carrier Solder Joints During Power Cycling" IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. 6, No. 3, 1983, pp. 233-237.