Browse > Article
http://dx.doi.org/10.4313/TEEM.2016.17.4.189

Design, Simulation, and Optimization of a Meander Micro Hotplate for Gas Sensors  

Souhir, Bedoui (Department of Electrical Engineering, National School of Engineer Sfax, University of Sfax)
Sami, Gomri (Department of Electrical Engineering, National School of Engineer Sfax, University of Sfax)
Hekmet, Charfeddine Samet (Department of Electrical Engineering, National School of Engineer Sfax, University of Sfax)
Abdennaceur, Kachouri (Department of Electrical Engineering, National School of Engineer Sfax, University of Sfax)
Publication Information
Transactions on Electrical and Electronic Materials / v.17, no.4, 2016 , pp. 189-195 More about this Journal
Abstract
Micro Hotplate (MHP) is the key component in micro-sensors, particularly gas sensors. Indeed, in metal oxide gas sensors MOX, micro-heater is used as a hotplate in order to control the temperature of the sensing layer which should be in the requisite temperature range over the heater area, so as to detect the resistive changes as a function of varying concentration of different gases. Hence, their design is a very important aspect. In this paper, we have presented the design and simulation results of a meander micro heater based on three different materials - platinum, titanium and tungsten. The dielectric membrane size is 1.4 mm × 1.6 mm with a thickness of 1.4 μm. Above the membrane, a meander heating film was deposed with a thickness of 100 nm. In order to optimize the geometry, a comparative study by simulating two different heater thicknesses, then two inter track widths has also been presented. Power consumption and temperature distribution were determined in the micro heater´s structure over a supply voltage of 5, 6, and 7 V.
Keywords
Gas sensors; Heater; Platinum; Titanium; Tungsten; Electro-thermal analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Malec and F. Skacel, Atmosfera, 21, 3 (2008).
2 L. Atzori, A. Iera, and G. Morabitoet, Comput. Netw., 54, 2787 (2010). [DOI: http://dx.doi.org/10.1016/ j.comnet.2010.05.010]   DOI
3 D. Miorandi, S. Sicari, F. Pellegrini, and I. Chlamtac, Ad Hoc Netw., 10, 1497 (2012). [DOI: http://dx.doi.org/10.1016/j.adhoc.2012.02.016]   DOI
4 D. S. Lee, S. D. Han, J. S. Huh, and D. D. Lee, Sens. Actuat. B Chem., 60, 57 (1999). [DOI: http://dx.doi.org/10.1016/S0925-4005(99)00244-0]   DOI
5 R. Faleh, M. Othman, S. Gomri, and K. Aguir, IEEE Sensors J., 16, 3123 (2016). [DOI: http://dx.doi.org/10.1109/JSEN.2016.2521578]   DOI
6 J. Y. Leng, X. J. Xu, L. Y. Ning, H. T. Fan, and T. Zhang, J. Colloid Interf. Sci., 356, 54 (2011). [DOI: http://dx.doi.org/10.1016/j.jcis.2010.11.079]   DOI
7 M. Bendahan, R. Boulmani, J. L. Seguin, and K. Aguir, Sensor Actuat B-Chem., 100, 320 (2004). [DOI: http://dx.doi.org/10.1016/j.snb.2004.01.023]   DOI
8 K. Aguir, C. Lemire, and D.B.B. Lollman, Sensor Actuat BChem., 84, 1 (2002). [DOI: http://dx.doi.org/10.1016/S0925-4005(02)00003-5]   DOI
9 H. Kumar, K. K. Sing, N. Sood, A. Kumar, and R. K. Mittal. Sensors Applications Symposium (SAS) (2014). [DOI: http://dx.doi.org/10.1109/SAS.2014.6798942]   DOI
10 Monika and A. Arora, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 2, 8 (2013).
11 N. Kumar and N. Mehta, Int. J Eng Sci., 4, 7 (2015).
12 G. Velmathi, S. Mohan, and N. Ramshanker, International Journal of Emerging Trends in Electrical and Electronics, 5, 2 (2013).
13 V. Bansal, A. Gurjar, D. Kumar, and B. Prasad, Excerpt from the Proc. of the COMSOL Conference (Bangalore, 2011).
14 V. S. Amrita, Ph. D. Disertation (University Ottawa Ontario 2015) p. 50.
15 J. Kathirvelan and R. Vijayaraghavan, J. Eng. Appl. Sci., 9, 11 (2014).
16 G. Saxena and R. Paily, Microsyst Technol., 21 (2015). [DOI: http://dx.doi.org/10.1007/s00542-014-2337-y]   DOI
17 N. Kumar and N. Mehta, International Journal of Engineering Sciences & Research Technology, 4, 7 (2015).
18 Z. Syed Ali and F. Udrea, W. I. Milne, and J. W. Gardner, 17, 6 (2008)[DOI: http://dx.doi.org/10.1109/JMEMS.2008.2007228]   DOI
19 V. K. Khana, M. Parasad, V. K. Dwivedi, C. Shekhar, A. C. Pankaj, and J. Basu, Indian J Pure Ap., 45 (2007).
20 A. Z. Sadek, W. Wlodarski, K. Kalantar-zadeh, D. A. Powell, W. L. Hughes, B. A. Buchine, and Z. L. Wang, Proc. of the Fourth IEEE Sensors 2005 Conference (Irvine, 2005)[DOI: http://dx.doi.org/10.1109/ICSENS.2005.1597956]   DOI
21 T. Guan and R. Puers, Procedia Engineering, 5 (2010)[DOI: http://dx.doi.org/10.1016/j.proeng.2010.09.366]   DOI
22 S. Sinha, S. Roy, and C. K. Sarkar, International Journal of Computer Applications IJCA (2011).
23 G. Velmathi, N. Ramshanker and S. Mohan, Excerpt from the Proc. of the COMSOL Conference (India, 2010)
24 N. Petra, J. Zweck, S. E. Minkoff, A. A. Kosterev, and J. H. Doty Siam, J. Appl. Math., 71, 1 (2011)[DOI: http://dx.doi.org/10.1137/100807181   DOI
25 M. Alfredo, J. L. Gonz', and A. Tavira-Fuentes, Rev. Mex. Fis., 54, 1 (2008).
26 J. H. Tsai and L. Lin, J. Microelectromech S., 11, 6 (2002)[DOI: http://dx.doi.org/10.1109/JMEMS.2002.802909]   DOI
27 C. A. Wrobel and Brebbia, Boundary Element Methods in Heat Transfer (Springer Science & Business Media, 2012) p. 90.
28 H. Chalabi, Ph. D. Disertation, p. 60, University Paul Cézanne, Tunisian (2007).
29 P. Yoboue, Ph. D. Disertation, p. 60, University Toulouse, French (2010).
30 P. Yoboue, Ph. D. Disertation, p. 28, University Toulouse, French (2010).