• Title/Summary/Keyword: heat pretreatment

Search Result 139, Processing Time 0.028 seconds

Effects of Pretreatment Time and pH low set value on Continuous Mesophilic Hydrogen Fermentation of Food Waste (열처리 시간과 pH 하한값이 음식물쓰레기 연속 중온 수소 발효에 미치는 영향)

  • Kim, Sang-Hyoun;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.343-348
    • /
    • 2011
  • Since 2005, food waste has been separately collected and recycled to animal feed or aerobic compost in South Korea. However, the conventional recycling methods discharge process wastewater, which contain pollutant equivalent to more than 50% of food waste. Therefore, anaerobic digestion is considered as an alternative recycling method of food waste to reduce pollutant and recover renewable energy. Recent studies showed that hydrogen can be produced at acidogenic stage in two-stage anaerobic digestion. In this study, the authors investigated the effects of pretreatment time and pH low set value on continuous mesophilic hydrogen fermentation of food waste. Food waste was successfully converted to $H_2$ when heat-treated at $70^{\circ}C$ for 60 min, which was milder than previous studies using pH 12 for 1 day or $90^{\circ}C$. Organic acid production dropped operational pH below 5.0 and caused a metabolic shift from $H_2/butyrate$ fermentation to lactate fermentation. Therefore, alkaline addition for operational pH at or over 5.0 was necessary. At pH 5.3, the result showed that the maximum hydrogen productivity and yield of 1.32 $m^3/m^3$.d and 0.71 mol/mol $carbohydrate_{added}$. Hydrogen production from food waste would be an effective technology for resource recovery as well as waste treatment.

Stress-induced Changes of Taurine Transporter Activity in the Human Colon Carcinoma Cell Line(HT-29)* (스트레스를 유발시킨 인체 소장상피세포주(HT-29) 모델에서 타우린수송체 활성의 변화*)

  • 윤미영;박성연;박태선
    • Journal of Nutrition and Health
    • /
    • v.34 no.2
    • /
    • pp.150-157
    • /
    • 2001
  • Intestinal absorption of dietary taurine is one of the regulatory component maintaining taurine homeostasis along with renal reabsorption, bile acid conjugation and secretion, and de nobo synthesis of taurine in mammals. Recent observations of decreased enterocytic levels of taurine in response to trauma, infection and surgical insults, postulate the possibility that intestinal taurine absorption might be impaired in such stressed conditions. The aim of the present study was to evaluate changes in enterocytic taurine transporter activity using the human intestinal colon carcinoma cell line, HT-29, in various stress-induced conditions. Pretreatment of the HT-29 cells with dexamethasone, a stress hormone(0.1,1,10 or 100$\mu$M) for 3 hrs, or with E coli heat-stable enterotoxin(10, 100, or 200nM) for 30 minutes in order to induce the condition of enterotoxigenic infection did not influence taurine uptake as compared to the value found in control cells. In contrast, pretreatment of the cells with cholera toxin(10, 100, 500, or 1000ng/ml)for 3hr or 24hr significantly decreased taurine uptake by HT-29 cells to 40~50% of the value found in untreated control cells. Kinetic studies of the taurine transporter activity were conducted in control and cholera toxin treated HT-29 cells with varying taurine concentrations(2~60$\mu$M) in the uptake medium. Pretreatment of the cells with cholera toxin(100ng/ml) for 3hr did not influence the Vmax, but resulted in a 55% increase in the Michaelis-Menten constant(Km) of the taurine transporter compared to those in control cells. These results suggest that cholera toxin-induced reduction in taurine transporter activity in HT-29 cells is associated with decreased affinity of the taurine transporter without altering the amount of transporter protein. Intestinal taurine absorption appears to be reduced in the condition of water-borne diseases caused by bacteria such as V. cholerae. This might influence the taurine status of infants and young children more readily, an age group in which the prevalence of intestinal infection is high and the role of intestinal absorption is crucial for maintaining the body taurine pool. (Korean J Nutrition 34(2) : 150-157, 2001)

  • PDF

The Enhancement of Recycling Processes Efficiency of Lithium Ion Batteries; A Review (리튬이온전지 재활용공정 효율 향상을 위한 공정개선 연구동향)

  • Kyoungkeun Yoo;Wonhwa Heo;Bumchoong Kim
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.24-36
    • /
    • 2024
  • The lithium-ion battery recycling process has been classified into direct recycling, hydrometallurgical process, and pyrometallurgical process. The commercial process based on the hydrometallurgical process produces black mass through pretreatment processes consisting of dismantling, crushing and grinding, heat treatment, and beneficiation, and then each metal is recovered by hydrometallurgical processes. Since all lithium-ion battery recycling processes under development conducts hydrometallurgical processes such as leaching, after the pretreatment process, to produce precursor raw materials, this article suggests a classification method according to the pretreatment method of the recycling process. The processes contain sulfation roasting, carbothermic reduction roasting, and alloy manufacturing, and the economic feasibility of the lithium-ion battery recycling process can be enhanced using unused by-products in the pretreatment process.

Inhibitory Effect of Apoptosis of Human Astrocytes by Juniper Oil (신경교(神經膠) 성상세포(星狀細胞)에서 쥬니퍼오일에 의한 세포자멸사(細胞自滅死)의 억제(抑制) 효과(效果))

  • Kim Tae-Heong;Kim Tae-Heon;Lee Sung-Ryull;Lyu Yeoung-Su
    • Journal of Oriental Neuropsychiatry
    • /
    • v.11 no.2
    • /
    • pp.1-9
    • /
    • 2000
  • In previous studies, heat shock has been reported to induce the apoptosis or programmed cell death through the activation of caspase-3. 1 investigated the effect of juniper pure essential oil on the heat shock-induced apoptosis in human astrocyte cell line CCF-STTGI. Treatment of the astrocytes with heat shock markedly induced apoptotic cell death. However, pretreatment of the astrocytes with juniper oil ingibited the heat shock-induced apoptosis. To determine whether juniper inhibits the heat shock-induced activation of these apoptotic proteases, activation of CPP32 was assessed by Western blotting. Consistent with flow cytometry. DNA fragmentation and giemsa staining, heat shock-induced activation of CPP32 was blocked by juniper oil. Poly(ADP-ribose) polymerase (PARP), cysteine protease substrates were fragmented as a consequence of apoptosis by heat shock. Juniper oil inhibited the PARP fragmentation. This juniper oil also inhibited the heat shock-induced activation of caspase-3. These results suggest that juniper oil may modulate the apoptosis through the activation of the interleukin-1-converting enzyme-like protease.

  • PDF

Inhibitory Effect of Lemon Oil on Apoptosis in Astrocytes (신경교(神經膠) 성상세포(星狀細胞)에서 레몬오일에 의한 세포자멸사(細胞自滅死)의 억제효과(抑制效果))

  • Kim, Jun-Han;Kim, Tae-Heon
    • Journal of Oriental Neuropsychiatry
    • /
    • v.11 no.1
    • /
    • pp.37-46
    • /
    • 2000
  • We investigated the effects of lemon pure essential oils on the heat shock-induced apoptosis in human astrocyte cell line CCF-STTG1. In previous studies, hear shock has been reported to induce the apoptosis or programmed cell death through the activation of caspase-3. Treatment of CCF-STTG1 cells with heat shock markedly induced apoptotic cell death as determined by flow cytometry. Interestingly, pretreatment of CCF-STTG1 cells with lemon pure essential oils inhibited the heat shock-induced apoptosis. Lemon also inhibited the heat shock-induced apoptosis in primary cultured rat astrocytes. To determine whether lemon inhibits the heat shock-induced activation of these apoptotic proteases, activation of CPP32 was assessed by Western blotting. Consistent with flow cytometry, DNA fragmentation and giemsa staining, heat shock-induced activation of CPP32 was blocked by lemon pure essential oil. PARP, cysteine protease substrates were fragmented as a consequence of apoptosis by heat shock. Lemon oil inhibited the PARP fragmentation. This essential oil also inhibited the heat shock-induced activation of caspase-3. These results suggest that lemon pure essential oils may modulate the apoptosis through the activation of the ICE-like caspases.

  • PDF

Effect of Weak Acid Pretreatment on the Enzymic Hydrolysis against Wheat Gluten of High Concentration (고농도 소맥 글루텐의 효소적 가수분해와 약산에 의한 전처리 효과)

  • 이기영;홍영식;이철호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1110-1116
    • /
    • 1998
  • To determine the optimum conditions for the enzymic hydrolysis against wheat gluten of high con centrations (6~14%, w/w, protein), a hydrolysis system combining weak acid pretreatment and enzymic hydrolysis was investigated. Alcalase showed the highest DH(degree of hydrolysis) of the tested proteases. After hydrolysis by alcalase, subsequently peptidases were applied for the better DH of the wheat gluten hydrolyzate. Peptidase NP2 showed the highest DH of the tested peptidases, but flavour zyme was shown for the lowest bitter taste of the resulting hydrolyzate. In order to minimize aggregation or gelling at higher initial substrate concentration during heat treatment, wheat gluten suspension was pretreated with possibly low concentrations of hydrochloric acid at 105oC for 1 hour, and then enzy matically hydrolysed with alcalase and subsequently with flavourzyme. Each required minimum concen tration of hydrochloric acid in the wheat gluten suspension of 6, 8, 10, 12, and 14%(w/w, protein) was 0.10, 0.15, 0.20, 0.225, and 0.275N, respectively. After the subsequent enzymic treatment by alcalase and peptidase NP2 for 24 hrs, the nitrogen solubility in the final wheat gluten hydrolysates was increased to 94.9, 86.4, 85.3, 89.3 and 95.0%, and their amino nitrogen content was increased to 2.87, 5.68, 7.34, 9.71 and 12.50mg/m, respectively.

  • PDF

Purification and Characterization of the Gelatin from the Bone of Cod, Gadus macrocephalus (대구뼈로부터 젤라틴의 추출정제와 특성)

  • Kim, Se-Kwon;Jeon, You-Jin;Lee, Byoung-jo;Lee, Chang-Kook
    • Journal of Life Science
    • /
    • v.6 no.1
    • /
    • pp.14-26
    • /
    • 1996
  • In order to effectively utilize fish(Cod, Gadus macrocephalus) bone obtained as fish waste in fish manufactory, the preparation of the fish bone gelatin were attempted by heat extracting method from collagen protein contained in the fish bone. The methods of two kinds pretreatments (the B-type by alkali pretreatment and the E-type by enzyme pretreatment) for fish bone and the optimal extraction conditions to prepare gelatin from pretreated fish bone were investigated. Physical properties and functionalities of the two type fish bone gelatins obtained were compared with the commercial gelatin and the fish skin gelatin. The optimal extraction conditions of the B-type and the E-type gelatins were 5 folds of added water with material(w/w), pH 5.0, 3 hrs of extraction time and 60$\circ$C of extraction temperature. The yield of the B-type and the E-type gelatins were 32.6% and 28.1 %, respectively. The B-type gelatin was superior to the E-type un all physical properties. Molecular weight of the B-type was larger than that of the E-type due to its pretreatment method. Among the composition of amino acids, the amino acids such as glycine, alanine, glutamic acid and imino acids(proline and hydroxyproline) were responsible for 68$\sim$70% of the total amino acids. Functionalities of the fish bone gelatin were almost similar to commercial gelatin.

  • PDF

Changes in Functional Constituents of Grape (Vilis vinifera) Seed by Different Heat Pretreatments

  • Lee, Ki-Teak;Lee, Jun-Young;Kwon, Yun-Ju;Yu, Feng;Park, Sang-Won
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.2
    • /
    • pp.144-149
    • /
    • 2004
  • Changes in functional constituents of grape (Vitis vinifera) seeds prepared by three different heat pretreatments were determined and compared with those of non-treated grape seed. The recovery of grape seed oils was generally increased by roasting, steaming and microwave processes, although the recovery of specific constituents varied among three heat pretreatments. The recovery of MeOH extracts of the seeds increased following the roasting process, whereas that of MeOH extracts decreased gradually with steaming and microwave treatments. Levels of four catechins in grape seeds: (+)-catechin, procyanidin B$_2$, (-)-epicatechin, and (-)-epicatechin gallate, were decreased with increased roasting and steaming time, but were unaffected by microwave treatment. During the three different heat pretreatments, levels and compositions of fatty acid did not change, whereas those of phytosterol compositions decreased greatly. These results suggest that a mild heat pretreatment, controlled for temperature and time, is needed to prevent a considerable loss in the level of valuable functional components in grape seed.

Neuroprotective Effects of Heat-Killed Levilactobacillus brevis KU15152 on H2O2-Induced Oxidative Stress

  • Hyun-Ji Bock;Na-Kyoung Lee;Hyun-Dong Paik
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1189-1196
    • /
    • 2023
  • This study proposed to demonstrate the neuroprotective effects of heat-killed Levilactobacillus brevis KU15152. Heat-killed L. brevis KU15152 showed antioxidant activity similar to that of Lacticaseibacillus rhamnosus GG, in terms of radical scavenging activity. To evaluate the neuroprotective effects, conditioned medium (CM) obtained by incubating heat-killed bacteria in intestinal cells (HT-29) was used through gut-brain axis. CM from L. brevis KU15152 protected neuroblastoma cells (SH-SY5Y) against H2O2-induced oxidative stress. Pretreatment with CM significantly alleviated the morphological changes induced by H2O2. Heat-killed L. brevis KU15152 showed an increased brain-derived neurotrophic factor (BDNF) expression in HT-29 cells. L. brevis KU15152-CM remarkably downregulated the Bax/Bcl-2 ratio, while upregulating the expression of BDNF and tyrosine hydroxylase (TH) in SH-SY5Y cells. Furthermore, L. brevis KU15152-CM reduced caspase-3 activity following H2O2 treatment. In conclusion, L. brevis KU15152 can be potentially used as food materials to avoid neurodegenerative diseases.

L-라이신 발효에 있어서 당밀전처리의 영향

  • Shin, Hyun-Chul;Kim, Seong-Jun;Sung, Jin-Suck;Jeon, Yeong-Joong;Lee, Jae-Heung
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.376-379
    • /
    • 1996
  • Cane molasses, the most widely used carbon source for the industrial fermentation of L-lysine, usually contains a high concentration of calcium ions which tend to cause scaling problem in the recovery process. To remove the calcium ions, cane molasses was pretrea ted with sulfuric acid by adjusting the pH to 2.5-3.5. When the pretreated solution was directly heat-sterilized and used in the fermentation, a significant reduction in L-lysine production was observed. In this paper, we proved that sucrose is a superior substrate for L-lysine fermentation to that of glucose or fructose and that the above-mentioned decrease of L-lysine production was caused by the hydrolysis of sucrose in the molasses when the molasses was heat-sterilized at a low pH. The problem was overcome by adjusting the pH of molasses to neutral before sterilization.

  • PDF