DOI QR코드

DOI QR Code

리튬이온전지 재활용공정 효율 향상을 위한 공정개선 연구동향

The Enhancement of Recycling Processes Efficiency of Lithium Ion Batteries; A Review

  • 유경근 (국립한국해양대학교 에너지자원공학과) ;
  • 허원화 (국립한국해양대학교 에너지자원공학과) ;
  • 김범중 (국립한국해양대학교 에너지자원공학과)
  • Kyoungkeun Yoo (Department of Energy and Resources Engineering, National Korea Maritime and Ocean University) ;
  • Wonhwa Heo (Department of Energy and Resources Engineering, National Korea Maritime and Ocean University) ;
  • Bumchoong Kim (Department of Energy and Resources Engineering, National Korea Maritime and Ocean University)
  • 투고 : 2024.04.09
  • 심사 : 2024.04.23
  • 발행 : 2024.04.30

초록

리튬이온전지 재활용 공정은 직접 재활용, 습식제련공정, 건식제련공정으로 분류되어 왔으며, 습식제련공정 기반 상용공정은 해체, 파분쇄, 열처리, 선별 등으로 구성된 전처리 공정으로 블랙매스를 생산하고 습식제련공정으로 각 금속을 회수한다. 개발 중인 모든 리튬이온전지 재활용공정은 전구체 원료 제조를 위해 전처리공정 후 침출 등의 습식제련공정을 진행하기 때문에 이 글에서는 재활용공정의 전처리공정에 따른 분류법을 제시하였다. 현재 개발 중인 주요 공정은 황산염배소, 탄소열환원, 합금제조 등이며, 전처리공정에서 미이용 부산물의 활용이 가능할 경우 리튬이온전지 재활용 공정의 경제성 향상이 가능하리라 판단된다.

The lithium-ion battery recycling process has been classified into direct recycling, hydrometallurgical process, and pyrometallurgical process. The commercial process based on the hydrometallurgical process produces black mass through pretreatment processes consisting of dismantling, crushing and grinding, heat treatment, and beneficiation, and then each metal is recovered by hydrometallurgical processes. Since all lithium-ion battery recycling processes under development conducts hydrometallurgical processes such as leaching, after the pretreatment process, to produce precursor raw materials, this article suggests a classification method according to the pretreatment method of the recycling process. The processes contain sulfation roasting, carbothermic reduction roasting, and alloy manufacturing, and the economic feasibility of the lithium-ion battery recycling process can be enhanced using unused by-products in the pretreatment process.

키워드

과제정보

This work was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program. Development of Material Component Technology) (20011176, Development of Advanced Technology in Hydrometallurgy for High Added Value of Resources Recovery) funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea).

참고문헌

  1. Korean Law Information Center, Act On Carbon Neutrality And Green Growth For Coping With Climate Crisis. https://www.law.go.kr, April 1, 2024.
  2. The 2050 Carbon Neutral Green Growth Committee, Carbon Neutrality 2050 Scenario. https://2050cnc.go.kr, April 1, 2024.
  3. Global demand and supply of electric vehicle batteries outlook. https://v.daum.net/v/20211013152528256, April 1, 2024.
  4. REGULATION (EU) 2023/1542 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 12 July 2023. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R1542, April 1, 2024.
  5. Yoo, K, 2023 : Lithium Ion Battery Recycling Industry in South Korea, Resources Recycling, 32(1), pp.13-20.
  6. Lee, S. and Yoo, K., 2021 : Waste and Recycling Status of Europe, Japan and USA, Resources Recycling, 30(1), pp. 92-101. https://doi.org/10.7844/KIRR.2021.30.1.92
  7. Kim, B., Kim, J. and Yoo, K., 2019 : Recycling Status of Gold, Silver, Platinum and Palladium, Journal of the Korean Society of Mineral and Energy Resources Engineers, 56(4), pp.359-366.
  8. Cho, B., Cho, Y., Lee, J., et al., 2019 : Korea's metal resources recycling research project - valuable recycling, Geosystem Engineering, 22(1), pp.48-58.
  9. Lithium ion battery recycling: A review of the current methods and global developments. https://www.cas.org/resources/cas-insights/sustainability/lithium-ion-battery-recycling, April 1, 2024.
  10. Ahn, J.W. and Cho, Y.C., 2023 : Current Status and Prospect of Waste Lithium Ion Battery(LIB) Recycling Technology by Hydrometallurgical Process, Resources Recycling, 32(4), pp.3-17.
  11. Velazquez-Martinez, O., Valio, J., Santasalo-Aarnio, A., et al., 2019 : A critical review of lithium-ion battery recycling processes from a circular economy perspective, Batteries, 5(4), 68.
  12. Kang, J., Senanayake, G., Sohn, J., et al., 2010 : Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272, Hydrometallurgy, 100(3-4), pp.168-171.
  13. Yoo, K., Koo, W. and Ahn, Y., 2023. KR. 10-2562997.
  14. Chen, H., Hu, P., Wang, D., et al., 2022 : Selective leaching of Li from spent LiNi0.8Co0.1Mn0.1O2 cathode material by sulfation roast with NaHSO4·H2O and water leach, Hydrometallurgy, 210, 105865.
  15. Wang, D., Zhang, X., Chen, H., et al., 2018 : Separation of Li and Co from the active mass of spent Li-ion batteries by selective sulfating roasting with sodium bisulfate and water leaching, Minerals Engineering, 126, pp.28-35.
  16. He, M., Rohani, S., Teng, L., et al., 2023 : Thermo-chemically driven layer structure collapse via sulfate roasting toward the selective extraction of lithium and cobalt from spent LiCoO2 batteries, Journal of Power Sources, 572, 233094.
  17. Chen, Y., Shi, P., Chang, D., et al., 2021 : Selective extraction of valuable metals from spent EV power batteries using sulfation roasting and two stage leaching process, Separation and Purification Technology, 258, 118078.
  18. Zhang, X., Cai, L., Fan, E., et al., 2021 : Recovery valuable metals from spent lithium-ion batteries via a low-temperature roasting approach: Thermodynamics and conversion mechanism, Journal of Hazardous Materials Advances, 1, 100003.
  19. Yang, Z., Zhang, Y., Yu, H., et al., P. 2023 : Sodium sulfite roasting for preferential lithium extraction from cathode material of spent lithium-ion batteries, Journal of Environmental Chemical Engineering, 11(3), 110060.
  20. Biswas, J., Ulmala, S., Wan, X., et al., 2023 : Selective Sulfation Roasting for Cobalt and Lithium Extraction from Industrial LCO-Rich Spent Black Mass, Metals, 13(2), 358.
  21. Yang, L., Zhang, H., Luo, F., et al., 2024 : Minimized carbon emissions to recycle lithium from spent ternary lithium-ion batteries via sulfation roasting, Resources, Conservation and Recycling, 203, 107460.
  22. Ahn, Y., Koo, W., Yoo, K., et al., 2022 : Carbothermic reduction roasting of cathode active materials using activated carbon and graphite to enhance the sulfuric-acid-leaching efficiency of nickel and cobalt, Minerals, 12(8), 1021.
  23. She, X., Zhu, K., Wang, J., et al., 2022 : Product control and a study of the structural change process during the recycling of lithium-ion batteries based on the carbothermic reduction method, Journal of Chemical Research, 46(1), 17475198211066533.
  24. Lombardo, G., Ebin, B., St. J. Foreman, M. R., et al., 2019 : Chemical transformations in Li-ion battery electrode materials by carbothermic reduction, ACS Sustainable Chemistry & Engineering, 7(16), pp.13668-13679.
  25. Yue, Y., Wei, S., Yongjie, B., et al., 2018 : Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching, ACS Sustainable Chemistry & Engineering, 6(8), pp.10445-10453.
  26. Liu, P., Xiao, L., Chen, Y., et al., 2019 : Recovering valuable metals from LiNixCoyMn1-x-yO2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching, Journal of Alloys and Compounds, 783, pp.743-752.
  27. ECO RnS, LIB recycling process using CO2. https://ecorns.com, April 1, 2024.
  28. Pyo, J. J. and Wang, J. P., 2019 : Recoverty of Lithium Carbonate and Nickel from Cathode Active Material LNO (Li2NiO2) of Precursor Process Byproducts, Resources Recycling, 28(4), pp.30-36.
  29. Park, S., Jung, S., Kwon, D., et al., 2022 : Carbothermic reduction of spent Lithium-Ion batteries using CO2 as reaction medium, Chemical Engineering Journal, 435, 135165.
  30. Vinayak, A. K., Xu, Z., Li, G., et al., 2023 : Current trends in sourcing, recycling, and regeneration of spent lithium-ion batteries-A review, Renewables, 1(3), pp.294-315.
  31. Baum, Z. J., Bird, R. E., Yu, X., et al., 2022 : Lithium-ion battery recycling─overview of techniques and trends, ACS Energy Lett, 7, pp.712-719.
  32. Peng, C., Liu, F., Wang, Z., et al., 2019 : Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system, Journal of Power Sources, 415, pp.179-188.
  33. Kim, J., Kim, Y., Moon, I., et al., 2023 : Process design and economic analysis of hydrogen roasting integrated with CCU for a carbon-free spent LIB recycling process, Chemical Engineering Journal, 451, 139005.