• 제목/요약/키워드: heat exchangers

검색결과 853건 처리시간 0.024초

Theoretical and Experimental Studies on Boiling Heat Transfer for the Thermosyphons with Various Helical Grooves

  • Han Kyuil;Cho Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제19권8호
    • /
    • pp.1662-1669
    • /
    • 2005
  • Boiling heat transfer characteristics of a two-phase closed thermosyphons with various helical grooves are studied experimentally and a mathematical correlation is developed to predict the performance of such thermosyphons. The study focuses on the boiling heat transfer characteristics of two-phase closed thermosyphons with copper tubes having 50, 60, 70, 80, 90 internal helical grooves. A two-phase closed thermosyphon with plain copper tube having the same inner and outer diameter as those of grooved tubes is also tested for comparison. Water, methanol and ethanol are used as working fluid. The effects of the number of grooves, various working fluids, operating temperature and heat flux are investigated experimentally. From these experimental results, a mathematical model is developed. In the present model, boiling of liquid pool in the evaporator is considered for the heat transfer mechanism of the thermosyphons. And also the effects of the number of grooves, the various working fluids, the operating temperature and the heat flux are brought into consideration. A good agreement between the boiling heat transfer coefficient of the thermosyphon estimated from experimental results and the predictions from the present mathematical correlation is obtained. The experimental results show that the number of grooves, the amount of the working fluid and the various working fluids are very important factors for the operation of thermosyphons. Also, the thermosyphons with internal helical grooves can be used to achieve some inexpensive and compact heat exchangers in low temperature.

에너지슬래브 지중열교환기의 성능 분석 (Performance Analysis of Energy-Slab Ground-Coupled Heat Exchanger)

  • 최종민;손병후
    • 설비공학논문집
    • /
    • 제24권6호
    • /
    • pp.487-496
    • /
    • 2012
  • Recently, utilization of building foundations as ground-coupled heat exchangers has attracted much attention because they reduce the cost and enhance the heat transfer. The objective of this study is to evaluate the performance of energy-slab ground-coupled heat exchanger installed in a commercial building. In order to demonstrate the energy transfer characteristics of the energy-slab, experiments were conducted from October 2010 to September 2011. The 1-year measurement results showed that the mean EWTs of brine returning from the energy-slab were $9.6^{\circ}C$ in heating season and $24.9^{\circ}C$ in cooling season, which were in a range of design target temperatures. In addition, the geothermal heat pump system with the energy-slab showed on-off operation according to the setting temperatures of secondary fluid in water storage tank. The results also showed that the energy-slab extracted heat of 198.6 kW from the ground and injected heat of 318.9 kW to the ground, respectively.

현장타설형 건물 기초를 이용한 지중열 공조시스템의 성능평가에 관한 연구 (A Study on Development of a Ground-Source Heat Pump System Utilizing Cast-in-place Concrete Pile Foundation of a Building)

  • 황석호;남유진
    • 설비공학논문집
    • /
    • 제22권9호
    • /
    • pp.641-647
    • /
    • 2010
  • Ground-source(Geothermal) heat pump(GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump(ASHP) systems. However, GSHP systems are not widespread because of their expensive installation costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a full-scale experiment. As a result, the average values for heat rejection were 186~201 W/m(per pile, 25 W/m per pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems.

핀-휜을 삽입한 채널의 길이에 따른 열전달 특성 변화 (Heat Transfer Characteristics depending on the Length of a Channel with Pin-Fin Array)

  • 손영석;신지영;이상록
    • 설비공학논문집
    • /
    • 제19권5호
    • /
    • pp.418-425
    • /
    • 2007
  • The power consumption and heat generation in a chip increase as the components are miniaturized and the computing speed becomes faster. Therefore, suitable heat dissipation has become one of the primary limiting factors to ensure the guaranteed performance and reliable operation of the electronic devices. A pin-fin array which may be considered as a porous medium could be used as an alterative cooling system of the electronic equipment. The aim of the present study is to investigate the forced-convective heat transfer characteristics of pin-fin heat exchangers. Convective heat transfer through the pin~fin array is analyzed experimentally based on porous medium approach. The influence of the structure of the pin-fin array including the pin-fin spacing, the pin diameter and plate length on heat transfer characteristic is investigated and compared with the Previous analytical results and existing correlation equations. Nowadays, electronic and mechanical devices become smaller and smaller. In this sense, the main purpose of this study is to decide the optimum pin-fin arrangement to get similar heat transfer performance when the length of the existing cooling system is reduced as a half.

백연 저감을 위한 열교환 시스템의 배기 열전달 특성에 관한 연구 (Study on Exhaust Air Heat Transfer Characteristics of Heat Exchange System for White Smoke Reduction)

  • 왕쩐후안;전종균;권영철
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.739-744
    • /
    • 2018
  • In this study, effects of reducing white smoke at a heat exchange system for white smoke reduction were studied in the winter season. For this purpose, the heat transfer processes on the exhaust air were investigated by Solidworks. Five wave heat exchangers of air-to-air and air-to-water type were applied for the exhaust air heat recovery. The analytical condition of the exhaust air was fixed and the computational analysis was performed according to the change of SA(supply air) inlet velocities. In order to evaluate the performance of the heat exchange system for white smoke reduction, W(water)/SA recovered capacities and the temperature/absolute humidity reduction rate were calculated. As SA inlet velocity increased, the exit temperature and absolute humidity of the mixing zone were reduced by up to about $40^{\circ}C$ and 0.12kg/kg respectively. Also, W/SA recovered capacities increased linearly up to about 35%.

고자기장용 자석을 위한 밀폐순환형 냉각장치 (Closed-Loop Cooling System for High Field Mangets)

  • 최연석;김동락;이병섭;양형석
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권1호
    • /
    • pp.59-64
    • /
    • 2006
  • A closed-loop cryogenic cooling system for high field magnets is presented. This design is motivated by our recent development of cooling system for 21 tesla Fourier Transform ion Cyclotron Resonance (FT-ICR) superconducting magnets without any replenishment of cryogen. The low temperature superconducting magnets are immersed in a subcooled 1.8 K bath, which is connected hydraulically to the 4.2 K reservoir through a narrow channel. Saturated liquid helium is cooled by Joule-Thomson heat exchanger and flows through the JT valve, isenthalpically dropping its pressure to approximately 1 6 kPa, corresponding saturation temperature of 1.8 K. Helium gas exhausted from pump is now recondensed by two-stage cryocooler located after vapor purify system. The amount of cryogenic Heat loads and required mass flow rate through closed-loop are estimated by a relevant heat transfer analysis, from which dimensions of JT heat exchanger and He II heat exchanger are determined. The detailed design of cryocooler heat exchanger for helium recondensing is performed. The effect of cryogenic loads, especially superfluid heat leak through the gap of weight load relief valve, on the dimensions of cryogenic system is also investigated.

설비공학 분야의 최근 연구 동향 : 2007년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2007)

  • 한화택;신동신;최창호;이대영;김서영;권용일
    • 설비공학논문집
    • /
    • 제20권12호
    • /
    • pp.844-861
    • /
    • 2008
  • The papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during the year of 2007 have been reviewed. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro nano fluid, micropump and fuel cell. Traditional CFD was still popular and widely used in research and development. Studies about fans and pumps were performed in the field of fluid machinery. Characteristics of flow and fin shape optimization are studied in the field of piping system. (2) The research works on heat transfer have been reviewed in the field of heat transfer characteristics, heat exchangers, and desiccant cooling systems. The research on heat transfer characteristics includes thermal transport in pulse tubes, high temperature superconductors, ground heat exchangers, fuel cell stacks and ice slurry systems. For the heat 'exchangers, the research on pin-tube heat exchanger, plate heat exchanger, condensers and gas coolers has been cordially implemented. The research works on heat transfer augmenting tubes have been also reported. For the desiccant cooling systems, the studies on the design and operating conditions for desiccant rotors as well as performance index are noticeable. (3) In the field of refrigeration, many papers were presented on the air conditioning system using CO2 as a refrigerant. The issues on the two-stage compression, the oil selection, and the appropriate oil charge were treated. The subjects of alternative refrigerants were also studied steadily. Hydrocarbons, DME and their mixtures were considered and various heat transfer correlations were proposed. (4) Research papers have been reviewed in the field of building facilities by grouping into the researches on heat and cold sources, air conditioning and air cleaning, ventilation and fire research including tunnel ventilation, flow control of piping system, and sound research with drain system. Main focuses have been addressed to the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies were mostly focused on analyzing the indoor environment in various spaces like cars, old tombs, machine rooms, and etc. in an architectural environmental field. Moreover, subjects of various fields such as the evaluation of noise, thermal environment, indoor air quality and development of energy analysis program were researched by various methods of survey, simulation, and field experiment.

고성능 상용튜브를 사용한 태양열 가열 해양온도차발전용 열교환기 설계 최적화 (Design Optimization of Heat Exchangers for Solar-Heating Ocean Thermal Energy Conversion (SH-OTEC) Using High-Performance Commercial Tubes)

  • 주천준;웬반합;이근식
    • 대한기계학회논문집B
    • /
    • 제40권9호
    • /
    • pp.557-567
    • /
    • 2016
  • 태양열 가열을 도입한 해양온도차발전용 열교환기(증발기와 응축기)설계 최적화가 수행되었다. 출력은 100kW이고 작동유체는 R134a이며 고성능 상용튜브를 사용하였다. 열전달면적과 압력강하는 관수의 증가와 관통로수의 감소에 따라 서로 상반되는 경향이 존재하므로 이를 해결하기 위하여, 설비투자비에 관련되는 열전달면적과 압력강하에 관련되는 운전비용 최소화를 고려한 두 목적함수를 갖는 유전자 알고리즘(GA)을 이용하여 다목적설계최적화를 수행하였다. 설계최적화 결과, 구현 가능한 최적의 열전달면적 및 압력강하의 조합들이 적정한 관수 및 관통로 수에 대하여 존재하였다. 도출된 증발기와 응축기의 Pareto 선들은 설계자들에게 재정적인 면을 고려하여 선택할 수 있도록 넓은 범위의 최적해를 제공하였다. 또한, 총열전달면적 중 응축기의 열전달면적이 증발기 쪽보다 크게 나타났다.

수직밀패형 지중열교환기의 설계인자가 보어홀 전열저항에 미치는 영향에 관한 연구 (A Study on the Effects of Design Parameters of Vertical Ground Heat Exchanger on the Borehole Thermal Resistance)

  • 장근선;김민준
    • 한국산학기술학회논문지
    • /
    • 제19권10호
    • /
    • pp.128-135
    • /
    • 2018
  • 현재 지열 열펌프 시스템에 수직밀폐형 지중열교환기가 가장 많이 적용되고 있으며, 수직밀폐형 지중열교환기의 성능에 영향을 미치는 주요 인자로는 지중 열전도율(k)과 보어홀 전열저항($R_b$)이 있다. 본 연구에서는 현장에서 측정된 열응답시험 데이터를 이용하여 보어홀 전열저항을 계산하였으며 지중열교환기 개별 설계인자들(순환수유량, 파이프 수, 그라우팅재)이 보어홀 전열저항에 미치는 영향을 분석하였다. 또한 도출된 그라우팅 열저항은 문헌에 제시된 다양한 상관식과 비교 분석하였다. 시험데이터를 통해 본 시험에서의 지중열교환기 보어홀 전열저항은 0.1303 W/m.K로 나타났으며, 보어홀 전열저항에서 그라우트 열저항이 66.6 %, 파이프 열저항이 31.5 %, 순환수 대류열저항이 1.9 %를 차지하여 그라우트가 보어홀 열전달에 가장 큰 영향을 미치는 인자임을 확인하였다. 또한 각 설계인자의 설계변수가 보어홀 전열저항에 미치는 영향을 분석한 결과 실리카샌드를 혼합하여 그라우트 열전도율를 높이는 방법이 파이프 수 증가나 순환수 유량증가보다 열전달 증진에 더 효과적임을 알 수 있었다.

슬릿과 평판 핀-관 열교환기의 공기측 열전달 및 마찰특성 (Air-side Heat Transfer and Friction Characteristics of Finned Tube Beat Exchangers with Slit Fin or Plain Fin)

  • 권영철;장근선;박병권;권정태;정지환
    • 에너지공학
    • /
    • 제16권1호
    • /
    • pp.7-14
    • /
    • 2007
  • 본 연구는 핀-관 열교환기의 건표면과 습표면 조건에서의 공기측 열전달 및 마찰특성을 실험을 통해 이해하고자 수행하였다. 핀-관 열교환기의 성능평가 및 해석기술을 확보하기 위하여 공기엔탈피식 칼로리 미터를 이용하였다. 핀형상은 슬릿과 평판이며, 관경은 7.0mm로 2열과 3열 핀-관 열교환기 4종에 대해 실험하여, 건표면과 습표면의 공기측 열전달 및 마찰특성을 조사하였다. 습표면에서 습도변화(RH 50%, 70%)에 따른 습도영향도 조사하였다. 건표면 조건에서 Re 수가 증가할수록 j 계수는 감소하며, 2열이 3열보다 높았다. 마찰계수는 슬릿 핀이 평판 핀보다 높았다. 습표면 조건에서 슬릿 핀이 평판 핀보다 그리고 2열이 3열보다 우수한 열전달효과를 나타내었다. j 계수와 마찰계수는 습도변화, 열수, 핀 형상에 따라 달라짐을 확인하였다.