• Title/Summary/Keyword: heat equation

Search Result 1,390, Processing Time 0.024 seconds

Heat and Mass Transfer between Hot Waste Gas and Cold Water in a Direct Contact Heat Exchanger (직접접촉식 열교환기내에서 물과 배기가스의 직접접촉에 의한 열 및 물질전달)

  • 이금배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1171-1178
    • /
    • 1992
  • An experiment was performed to describe the heat and mass transfer occurring between hot waste gas and cold water through direct contact in a direct contact heat exchanger. This model was then used to obtain an equation of overall heat transfer coefficent based on heat exchanger volume. The diffusion heat transfer rate is 2-3 times larger than the convection heat transfer rate as results of condensation of the water vapor contained in the waste gas. The boiler efficiency increases over 10%.

Effect of Circumferential Wall Heat Conduction on Boundary Conditions for Convection Heat Transfer from a Circular Tube in Cross Flow (원관 주위의 대류 열전달에서 경계조건에 대한 원주방향 열전도의 영향)

  • 이상봉;이억수;김시영
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.39-45
    • /
    • 2001
  • With uniform heat generation from the inner surface of the cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer is investigated for the case of forced convection around horizontal circular tube in cross flow of air. The wall conduction number which can be deduced from the governing energy equation should be used to express the effect of circumferential wall heat conduction. It is demonstrated that the circumferential wall heat conduction influences local Nusselt numbers of one-dimensional and two-dimensional solutions.

  • PDF

A Numerical Study on the Anisotropic Thermal Conduction by Phonon Mean Free Path Spectrum of Silicon in Silicon-on-Insulator Transistor (실리콘 박막 트랜지스터 내 포논 평균자유행로 스펙트럼 비등방성 열전도 특성에 대한 수치적 연구)

  • Kang, Hyung-sun;Koh, Young Ha;Jin, Jae Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.111-117
    • /
    • 2016
  • The primary concern of this research is to examine the phonon mean free path (MFP) spectrum contribution to heat conduction. The size effect of materials is determined by phonon MFP, and the size effect appears when the phonon MFP is similar to or less than the characteristic length of materials. Therefore, knowledge of the phonon MFP is essential to increase or decrease the heat conduction of a material for engineering applications, such as micro/nanosystems. In this study, frequency dependence of the phonon transport is considered using the Boltzmann transport equation based on a full phonon dispersion model. Additionally, the phonon MFP spectrums of in-plane and out-of-plane heat transport are investigated by varying the film thickness of the silicon layer from 41 nm to 177 nm. This will increase the understanding of anisotropic heat conduction in a SOI (Silicon-on-Insulator) transistor.

Numerical Simulation and Analysis for Optimum Design of a Thermoacoustic Refrigerator (공명관식 열음향 냉동기의 최적설계를 위한 수치모사 및 설계인자 분석)

  • Kim, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.329-340
    • /
    • 1995
  • Basic refrigeration effect and efficiency of a thermoacoustic refrigerator is studied. The refrigerator model for numerical simulation is composed of half wavelength resonator and appropriate stack of plate. Theoretical model for thermoacoustic refrigeration suggested by Swift et. al is adapted for numerical calculation. The model contains arbitrary viscosity effect of the gas filled in the resonator. The wave equation is integrated by using 4-th order Runge-Kutta algorithm to give pressure distribution along the stack of plate. Heat flux and COP are also calculated based on the energy flux equation. By analyzing the numerical simulation results, optimum values of design parameters for thermoacoustic refrigerator are obtained.

  • PDF

Investigation on Numerical Integration for Radiation Heat Transfer in Radiating Fluid (복사유체의 복사열전달 수치 적분에 관한 연구)

  • Han Cho Young
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.43-51
    • /
    • 2004
  • Interaction between fluid flow and thermal radiation has received considerable attention due to its numerous applications in engineering field. In this case the thermofluid properties of radiating fluid vary with the variation of temperature field caused by absorption and emission of radiant heat. To analyze the radiation heat transfer in radiating fluid, the simultaneous solution of the radiative transfer equation (RTE) and the fluid dynamics equations is required. This means that the numerical procedure used for the RTE must be computationally efficient to permit its inclusion in the other submodels, and must be compatible with the other transport equations. The finite volume method (FVM) and the discrete ordinates method (DOM) are usually employed to simulate radiation problems in generalized coordinates. These two representative methods are examined and compared, especially in view of the numerical integration of the radiation intensity over solid angle. The FVM shows better accuracy than the DOM owing to less constraints of the selection of control angle.

Mass and Heat Transfer Characteristics of Vertical Flat Plate with Free Convection

  • Kim Myoung- Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.729-735
    • /
    • 2005
  • This paper has dealt with the characteristics of mass and heat transfer of vertical flat plate with free convection. The theory of similarity transformations applied to the momentum and energy equations for free convection. To derive the similarity equation of mass transfer. the equation for conservation of species was added to the continuity. momentum and energy equations. The momentum, energy and species equations set numerically to obtain the velocity, temperature and mass fraction of species as dimensionless. For cases where momentum transport dominates, the thermal boundary layers are shorter than the momentum boundary layer. The relationships between momentum, energy and species were clarified from this study.

Experiments on the Behavior of Underground Utility Cable in Fire (지하구 케이블의 연소특성 실험)

  • 박승민;김운형;윤명오
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.75-80
    • /
    • 2002
  • In this paper, some experiments of a heat release rate and toxicity for underground utility 22.9kv cable in fire was conducted and analysed applying plume equation and smoke chamber test separately, A 22.9 ㎸ power cable is selected for testing heat release in ISO 9705 geometry and toxicity production is measured with NES 713 (British-Naval Engineering Standard)test. In test results, Cable heat release reached about 60 ㎾ above 1.2 m from heptane pan and CO generated lethal concentration under 30 min. exposure condition.

Investigation on Numerical Integration for Radiation Heat Transfer in Radiating Fluid (복사유체의 복사열전달 수치 적분에 관한 연구)

  • Han Cho Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.62-70
    • /
    • 2004
  • Interaction between fluid flow and thermal radiation has received considerable attention due to its numerous applications in engineering field. In this case the thermofluid properties of radiating fluid vary with the variation of temperature field caused by absorption and emission of radiant heat. To analyze the radiation heat transfer in radiating fluid, the simultaneous solution of the radiative transfer equation (RTE) and the fluid dynamics equations is required. This means that the numerical procedure used for the RTE must be computationally efficient to permit its inclusion in the other submodels, and must be compatible with the other transport equations. The finite volume method (FVM) and the discrete ordinates method (DOM) are usually employed to simulate radiation problems in generalized coordinates. These two representative methods are examined and compared, especially in view of the numerical integration of the radiation intensity over solid angle. The FVM shows better accuracy than the DOM owing to less constraints of the selection of control angle.

  • PDF

An Experimental Study on Heat Transfer Characteristics with Turbulent Flow in a Cylindrical Annuli (원형이중관내의 난류유동의 열전달 특성에 관한 실험적 연구)

  • Chang, Tae-Hyun;Lee, Kwon-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.193-200
    • /
    • 2002
  • An experimental study was performed to study heat transfer characteristics for turbulent flow in an axisymmetric annuli. The air flow temperature and the local Nusselt number in turbulent flow were measured or calculated for Re=30,000, 40,000, 50,000, 60,000, 70,000 and 80,000. The local Nusselts number were compared to that obtained from Dittus-Boelter equation with turbulent flow. The results show that the flow enhances the heat transfer in the initial and exit portion of the test tube.

  • PDF

아크 용접에서 구동력에 따른 열 및 물질 유동에 관한 연구

  • 김원훈;나석주
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.27-41
    • /
    • 1996
  • In this study the heat transfer and fluid flow of the molten pool in stationary gas tungsten arc welding using argon shielding gas were investigated. Transporting phenomena from the welding arc to the base material surface, such as current density, heat flux, arc pressure and shear stress acting on the weld pool surface, were taken from the simulation results of the corresponding welding arc. Various driving forces for the weld pool convection were considered, self-induced electromagnetic, surface tension, buoyancy, and impinging plasma arc forces. Furthermore, the effect of surface depression due to the arc pressure acting on the molten pool surface was considered. Because fusion boundary has a curved and unknown shape during welding, a boundary-fitted coordinate system was adopted to precisely describe the boundary for the momentum equation. The numerical model was applied to AISI 304 stainless steel and compared with the experimental results.

  • PDF