• Title/Summary/Keyword: harsh environment

Search Result 338, Processing Time 0.034 seconds

Sensorless Speed Control of Induction Motor (유도전동기의 센서리스 속도제어)

  • Seo, Young-Soo;Cha, Kwang-Hun;Lee, Sang-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.509-511
    • /
    • 1997
  • A sensorless controller of induction motor has several advantage availability in a harsh environment. In this paper, the speed information is driving from the currents and the estimated stator flux. To obtain the estimated stator flux, this study is using the Estimator. The simulation results show that the proposed scheme has activity over a wide speed range and good response to load variations.

  • PDF

Simulation of Interface Ageing Effect of Suspension Insulator Using ANSYS (ANSYS를 이용한 현수애자의 계면팽창거동에 따른 특성 평가)

  • 우병철;한세원;조한구
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.8
    • /
    • pp.342-347
    • /
    • 2003
  • The suspension insulators are subjected to harsh environment in service for a long time. Long term reliability of the insulators is required for both mechanical and electrical performances. We studied an analysing method to find out a deformation of brittle porcelain with a thermal expansion of simulation analysis and experimental results show that cement volume growths affect severely to b mechanical failure ageing.

Stress Response of Cement Interface on Manufacturing Process of a Suspension Insulator (송전선용 현수애자 양생공정에서 발생하는 접착부의 응력변화)

  • Woo, Byung-Chul;Han, See-Won;Cho, Han-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1448-1450
    • /
    • 2003
  • The suspension insulators are subjected to harsh environment in service for a long time. Long term reliability of the insulators is required for both mechanical and electrical performances. We studied an analysing method to find out a deformation of brittle porcelain with a thermal expansion of simulation analysis and experimental results show that cement volume growths affect severely to be mechanical failure ageing.

  • PDF

Sex-linked Dwarf Gene for Broiler Production in Hot-humid Climates

  • Islam, M.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1662-1668
    • /
    • 2005
  • This review has been done to examine sex-linked dwarf gene in broiler production in hot-humid climates. Introduction of sex-linked dwarf gene especially in hot harsh tropical environments brings a great advantage for broiler production. The heavy broiler parent suffers due to the stress of these adverse climates. Sex-linked dwarf genes reduce body weight, egg weight, but are superior for adaptability under harsh tropical environments, with a lower requirement for housing and feed, better survivability and reproductive fitness giving fewer defective eggs, more hatching eggs, better fertility, hatchability, feed conversion efficiency and resistance to disease. Overall the cost of chick production from dwarf hens is lower than from their normal siblings. Market weights of broilers from sexlinked dwarf dams is almost similar to those of broilers from normal dams with normal sires. But the net benefit of broiler production from sex-linked dwarf dams is found to be greater than that of broilers from normal dams. This will be the most important to the rural communities in Bangladesh and in other countries where the similar environment and socio-economic conditions exist. Therefore, sexlinked dwarf hens might be used in broiler breeding plan as well as broiler production in the tropics.

The Ewe's Reproductive Performance, Growth Rate and Carcass Quality of Lambs Kept in a Barn vs Those Kept under an Overhead Shelter

  • Kuznicka, Ewa;Rant, Witold
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.2
    • /
    • pp.211-217
    • /
    • 2013
  • A herd of polish lowland local sheep was divided into two equal groups: the first group was kept under an overhead shelter, and the second group was kept in a warm barn. The effect of maintenance on ewe's reproductive performance, survival as well as the growth rate of lambs, and their carcasses quality was investigated. The lack of differences in fertility and prolificacy of ewes as well as in the survival and growth rate between the groups confirmed a good adaptation of $\dot{Z}$ela$\acute{z}$nie$\acute{n}$ska sheep to low temperature. Harsh environmental conditions did not cause a significant decrease of the body weight growth; however, they brought in an (insignificant) reduction of subcutaneous fat thickness and meatiness of the loin part of a lamb's body. The fat content of carcasses obtained from lambs reared under the overhead shelter was significantly lower, with no differences of meat and bones contribution between the groups.

Fabrication SiCN micro structures for extreme high temperature systems (초고온 시스템용 SiCN 마이크로 구조물 제작)

  • Thach, Phan Dui;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.216-216
    • /
    • 2009
  • This paper describes a novel processing technique for the fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for extreme microelectromechanical system (MEMS) applications. A polydimethylsiloxane (PDMS) mold was formed on an SU-8 pattern using a standard UV photolithographic process. Next, the liquid precursor, polysilazane, was injected into the PDMS mold to fabricate free-standing SiCN microstructures. Finally, the solid polymer SiCN microstructure was cross-linked using hot isostatic pressure at $400^{\circ}C$ and 205 bar. The optimal pyrolysis and annealing conditions to form a ceramic microstructure capable of withstanding temperatures over $1400^{\circ}C$ were determined. Using the optimal process conditions, the fabricated SiCN ceramic microstructure possessed excellent characteristics includingshear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}\;{\Omega}$, and BDV (1.2 kV, minimum). Since the fabricated ceramic SiCN microstructure has improved electrical and physical characteristics compared to bulk Si wafers, it may be applied to harsh environments and high-power MEMS applications such as heat exchangers and combustion chambers.

  • PDF

Sensor Communication Network Architecture for Harsh Environments of Nuclear Power Plant (원전 극한환경적용 센서 통신망 구조)

  • Cho, Jai-Wan;Lee, Joon-Koo;Hur, Seop;Koo, In-Soo;Hong, Seok-Boong
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.540-541
    • /
    • 2008
  • 원자력 발전소 격납구조(containment) 내에 설치되는 센서, 구동기(actuator) 및 설비는 원전의 안전운전과 함께 방사능 누출사고와 같은 중대사고(severe accident)를 예방하기 위한 것이다. 격납구조 내부는 Category I 등급으로 분류되며, 격납구조 내부에 설치되는 센서, 구동기, 기기 및 통신망은 IEEE Std. 323-1974에서 정의하는 극한환경(harsh environment) 요건에서 생존할 수 있는 내환경성이 요구된다. 이러한 엄격한 내환경성 요건으로 인해 일반 산업의 IT 기반 센서통신망이 원전 격납건물 내부에는 적용되지 않고 있다. 최근에 이르러 독일을 중심으로 신규로 건설 중이거나 계획 중인 원전에서는 일반 산업의 IT 기반 센서 통신망 적용이 검토되고 있다. 본 논문에서는 IT 기반의 첨단 센서 통신망 기술을 격납구조내부와 같은 극한 환경에 적용하기 위한 방안을 제시하고자 한다. 정상운전중의 원전 격납 건물 내부의 환경(온도, 감마선, 습도) 특성과 중대 사고를 가정한 DBA (설계 기준사고) 요건에서의 환경 특성을 조사하였다. 또한 설계기준사고에서 정의한 감마선 조사 환경에서 통신 시스템의 생존성을 실험하였다. 이를 토대로 격납구조내부의 원전 극한 환경 통신망의 개선방안을 제시하고자 한다.

  • PDF

Direct Bonding Characteristics of 2" 3C-SiC Wafers for Harsh Environment MEMS Applications (극한 환경 MEMS용 2" 3C-SiC기판의 직접접합 특성)

  • 정귀상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.700-704
    • /
    • 2003
  • This paper describes on characteristics of 2" 3C-SiC wafer bonding using PECVD (plasma enhanced chemical vapor deposition) oxide and HF (hydrofluoride acid) for SiCOI (SiC-on-Insulator) structures and MEMS (micro-electro-mechanical system) applications. In this work, insulator layers were formed on a heteroepitaxial 3C-SiC film grown on a Si (001) wafer by thermal wet oxidation and PECVD process, successively. The pre-bonding of two polished PECVD oxide layers made the surface activation in HF and bonded under applied pressure. The bonding characteristics were evaluated by the effect of HF concentration used in the surface treatment on the roughness of the oxide and pre-bonding strength. Hydrophilic character of the oxidized 3C-SiC film surface was investigated by ATR-FTIR (attenuated total reflection Fourier transformed infrared spectroscopy). The root-mean-square suface roughness of the oxidized SiC layers was measured by AFM (atomic force microscope). The strength of the bond was measured by tensile strength meter. The bonded interface was also analyzed by IR camera and SEM (scanning electron microscope), and there are no bubbles or cavities in the bonding interface. The bonding strength initially increases with increasing HF concentration and reaches the maximum value at 2.0 % and then decreases. These results indicate that the 3C-SiC wafer direct bonding technique will offers significant advantages in the harsh MEMS applications.ions.

Design of Rescue Robot in Hazardous and Disastrous Environment

  • Kwak, Sung-Hun;Choi, Gi-Sang;Choi, Gi-Heung
    • International Journal of Safety
    • /
    • v.6 no.1
    • /
    • pp.11-15
    • /
    • 2007
  • In many cases, rescue robots work under harsh conditions such as the presence of various obstacles, high temperature, and limited visibility, etc. These robots are required to have tough mechanical structure, good sensing and control capability, and reliable communication capability for receiving operator's command and sending information on the state of the robot and environment. In this study, a rescue robot that can investigate hazardous or disastrous sites with these capabilities is designed and implemented. The performance of the proposed rescue robot is tested under simulated disastrous environment.

In-situ P-doped LPCVD Poly Si Films as the Electrodes of Pressure Sensor for High Temperature Applications (고온용 압력센서 응용을 위한 in-situ 인(P)-도핑 LPCVD Poly Si 전극)

  • Choi, Kyeong-Keun;Kee, Jong;Lee, Jeong-Yoon;Kang, Moon Sik
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.438-444
    • /
    • 2017
  • In this paper, we focus on optimization of the in-situ phosphorous (P) doping of low-pressure chemical vapor deposited (LPCVD) poly Si resistors for obtaining near-zero temperature coefficient of resistance (TCR) at temperature range from 25 to $600^{\circ}C$. The deposited poly Si films were annealed by rapid thermal anneal (RTA) process at the temperature range from 900 to $1000^{\circ}C$ for 90s in nitrogen ambient to relieve intrinsic stress and decrease the TCR in the poly Si layer and get the Ohmic contact. After the RTA process, a roughness of the thin film was slightly changed but the grain size and crystallinity of the thin film with the increase in anneal temperature. The film annealed at $1,000^{\circ}C$ showed the behavior of Schottky contact and had dislocations in the films. Ohmic contact and TCR of $334.4{\pm}8.2$ (ppm/K) within 4 inch wafer were obtained in the measuring temperature range of 25 to $600^{\circ}C$ for the optimized 200 nm thick-poly Si film with width/length of $20{\mu}m/1,800{\mu}m$. This shows the potential of in-situ P doped LPCVD poly Si as a resistor for pressure sensor in harsh environment applications.