• Title/Summary/Keyword: harpin

Search Result 10, Processing Time 0.026 seconds

Expression of hpa1 Gene Encoding a Bacterial Harpin Protein in Xanthomonas oryzae pv. oryzae Enhances Disease Resistance to Both Fungal and Bacterial Pathogens in Rice and Arabidopsis

  • Choi, Min-Seon;Heu, Sunggi;Paek, Nam-Chon;Koh, Hee-Jong;Lee, Jung-Sook;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.28 no.4
    • /
    • pp.364-372
    • /
    • 2012
  • Xanthomonas oryzae pv. oryzae causing bacterial leaf blight disease in rice produces and secretes Hpa1 protein that belongs to harpin protein family. Previously it was reported that Hpa1 induced defense responses when it was produced in tobacco. In this study, we expressed hpa1 gene in rice and Arabidopsis to examine the effects of Hpa1 expression on disease resistance to both fungal and bacterial pathogens. Expression of hpa1 gene in rice enhanced disease resistance to both X. oryzae pv. oryzae and Magnaporthe grisea. Interestingly, individual transgenic rice plants could be divided into four groups, depending on responses to both pathogens. hpa1 expression in Arabidopsis also enhanced disease resistance to both Botrytis cineria and Xanthomonas campestris pv. campestris. To examine genes that are up-regulated in the transgenic rice plants after inoculation with X. oryzae pv. oryzae, known defense-related genes were assessed, and also microarray analysis with the Rice 5 K DNA chip was performed. Interestingly, expression of OsACS1 gene, which was found as the gene that showed the highest induction, was induced earlier and stronger than that in the wild type plant. These results indicate that hpa1 expression in the diverse plant species, including monocot and dicot, can enhance disease resistance to both fungal and bacterial plant pathogens.

HpaXm from Xanthomonas citri subsp. malvacearum is a Novel Harpin with Two Heptads for Hypersensitive Response

  • Miao, Wei-Guo;Song, Cong-Feng;Wang, Yu;Wang, Jin-Sheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.54-62
    • /
    • 2010
  • A novel harpin-like protein, HpaXm, was described from cotton leaf blight bacteria, Xanthomonas citri subsp. malvacearum. The hpaXm was found to be localized between hrp2 and hrcC. A phylogenetic analysis of the complete amino acid sequence or solely the 13 highly conserved residues $H_2N$-SEKQLDQLLTQLI-COOH in the N-terminal $\alpha$-helix indicates that HpaXm is evolutionarily closer to HpaGXag and HpaXac than to Hpa1Xoo and Hpa1Xoc. A synthesized peptide containing two heptads, 39-LDQLLTQLIMALLQ-52, from the N-terminal a-helical region of HpaXm displayed comparable activity in inducing a hypersensitive response, but two other synthesized derivatives, $HpaXm{\Delta}T44C$ and $HpaXm{\Delta}M48Q$, showed reduced HR-triggering activity. The data from a GST trap test revealed that HpaXm was released into the extracellular medium, hpaXm mutant deficient for the leader peptide (1-MNSLNTQIGANSSFL-15) was unable to be secreted outside cells but still induced HR in tobacco leaves.

Augmenting Plant Immune Responses and Biological Control by Microbial Determinants (새로운 생물적 방제 전략: 미생물 인자 유래 식물면역 유도)

  • Lee, Sang Moo;Chung, Joon-hui;Ryu, Choong-Min
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.161-179
    • /
    • 2015
  • Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

The K-band push-push type miniaturized haripin resonator oscillator (소형 Haripin 공진기를 이용한 K 대역 Push-Push형 발진기)

  • 주한기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.967-973
    • /
    • 1997
  • In this paper, the designed and fabrication of a K-band push-push oscillator using miniaturized hairpin resonator have been presented. One experimenal oscillator has been designed and fabricated for K-band point-to-point operation. the miniaturized harpin resonator has been analyzed theoretically and simulated by MPIE(Mixed Potential Integral Equation) method. With this results, the analysis of hairpin resonator which coupled microstrip line has been carried out with transmission-mode using this results. an optimized output matching network for the suppression of the fundamental and the 3rd order harmonic was acquired by using a nonlinear analysis method. The fabricated oscillator shows the output power of -2.28dBm, the fundamental frequency suppression of -19dBc, the 3rd order harmonic suppressionof -24dBc and 0.33 percent effiiency at 22.8GHz. The experimental outputs are in good agreement with the theoretical and simulated results.

  • PDF

A novel WD40 protein, BnSWD1, is involved in salt stress in Brassica napus

  • Lee, Sang-Hun;Lee, Jun-Hee;Paek, Kyung-Hee;Kwon, Suk-Yoon;Cho, Hye-Sun;Kim, Shin-Je;Park, Jeong-Mee
    • Plant Biotechnology Reports
    • /
    • v.4 no.2
    • /
    • pp.165-172
    • /
    • 2010
  • Genes that are expressed early in specific response to high salinity conditions were isolated from rapeseed plant (Brassica napus L.) using an mRNA differential display method. Five PCR fragments (DD1.5) were isolated that were induced by, but showed different response kinetics to, 200 mM NaCl. Nucleotide sequence analysis and homology search revealed that the deduced amino sequences of three of the five cDNA fragments showed considerable similarity to those of ${\beta}$-mannosidase (DD1), tomato Pti-6 proteins (DD5), and the tobacco harpin-induced protein hin1 (DD4), respectively. In contrast, the remaining clones, DD3 and DD2, did not correspond to any substantial existing annotation. Using the DD3 fragment as a probe, we isolated a full-length cDNA clone from the cDNA library, which we termed BnSWD1 (Brassica napus salt responsive WD40 1). The predicted amino-acid sequence of BnSWD1 contains eight WD40 repeats and is conserved in all eukaryotes. Notably, the BnSWD1 gene is expressed at high levels under salt-stress conditions. Furthermore, we found that BnSWD1 was upregulated after treatment with abscisic acid, salicylic acid, and methyl jasmonate. Our study suggests that BnSWD1, which is a novel WD40 repeat-containing protein, has a function in salt-stress responses in plants, possibly via abscisic acid-dependent and/or -independent signaling pathways.

Expression of $HpaG_{Xooc}$ Protein in Bacillus subtilis and its Biological Functions

  • Wu, Huijun;Wang, Shuai;Qiao, Junqing;Liu, Jun;Zhan, Jiang;Gao, Xuewen
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.194-203
    • /
    • 2009
  • $HpaG_{Xooc}$, from rice pathogenic bacterium Xanthomonas oryzae pv. oryzicola, is a member of the harpin group of proteins, eliciting hypersensitive cell death in non-host plants, inducing disease and insect resistance in plants, and enhancing plant growth. To express and secret the $HpaG_{Xooc}$ protein in Bacillus subtilis, we constructed a recombinant expression vector pM43HF with stronger promoter P43 and signal peptide element nprB. The SDS-PAGE and Western blot analysis demonstrated the expression of the protein $HpaG_{Xooc}$ in B. subtilis. The ELISA analysis determined the optimum condition for $HpaG_{Xooc}$ expression in B. subtilis WBHF. The biological function analysis indicated that the protein $HpaG_{Xooc}$ from B. subtilis WBHF elicits hypersensitive response(HR) and enhances the growth of tobacco. The results of RT-PCR analysis revealed that $HpaG_{Xooc}$ induces expression of the pathogenesis-related genes PR-1a and PR-1b in plant defense response.

Transgenic Tobacco Expressing the hrpNEP Gene from Erwinia pyrifoliae Triggers Defense Responses Against Botrytis cinerea

  • Sohn, Soo-In;Kim, Yul-Ho;Kim, Byung-Ryun;Lee, Sang-Yeob;Lim, Chun Keun;Hur, Jang Hyun;Lee, Jang-Yong
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.232-239
    • /
    • 2007
  • $HrpN_{EP}$, from the gram-negative pathogen, Erwinia pyrifoliae, is a member of the harpin group of proteins, inducing pathogen resistance and hypersensitive cell death in plants. When the $hrpN_{EP}$ gene driven by the OsCc1 promoter was introduced into tobacco plants via Agrobacterium-mediated transformation, their resistance to the necrotrophic fungal pathogen, Botrytis cinerea, increased. Resistance to B. cinerea was correlated with enhanced induction of SA-dependent genes such as PR-1a, PR2, PR3 and Chia5, of JA-dependent genes such as PR-1b, and of genes related to ethylene production, such as NT-EFE26, NT-1A1C, DS321, NT-ACS1 and NT-ACS2. However the expression of NPR1, which is thought to be essential for multiple-resistance, did not increase. Since the pattern of expression of defense-related genes in $hrpN_{EP}$-expressing tobacco differed from that in plants expressing $hpaG_{Xoo}$ from Xanthomonas oryzae pv. Oryzae, these results suggest that different harpins can affect the expression of different defense-related genes, as well as resistance to different plant pathogens.

Genetic Organization of the hrp Genes Cluster in Erwinia pyrifoliae and Characterization of HR Active Domains in HrpNEp Protein by Mutational Analysis

  • Shrestha, Rosemary;Park, Duck Hwan;Cho, Jun Mo;Cho, Saeyoull;Wilson, Calum;Hwang, Ingyu;Hur, Jang Hyun;Lim, Chun Keun
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.30-42
    • /
    • 2008
  • The disease-specific (dsp) region and the hypersensitive response and pathogenicity (hrp) genes, including the hrpW, $hrpN_{Ep}$, and hrpC operons have previously been sequenced in Erwinia pyrifoliae WT3 [Shrestha et al. (2005a)]. In this study, the remaining hrp genes, including the hrpC, hrpA, hrpS, hrpXY, hrpL and hrpJ operons, were determined. The hrp genes cluster (ca. 38 kb) was comprised of eight transcriptional units and contained nine hrc (hrp conserved) genes. The genetic organization of the hrp/hrc genes and their orientation for the transcriptions were also similar to and collinear with those of E. amylovora, showing ${\geq}80%$ homologies. However, ORFU1 and ORFU2 of unknown functions, present between the hrpA and hrpS operons of E. amylovora, were absent in E. pyrifoliae. To determine the HR active domains, several proteins were prepared from truncated fragments of the N-terminal and the C-terminal regions of $HrpN_{Ep}$ protein of E. pyrifoliae. The proteins prepared from the N-terminal region elicited HR, but not from those of the C-terminal region indicating that HR active domains are located in only N-terminal region of the $HrpN_{Ep}$ protein. Two synthetic oligopeptides produced HR on tobacco confirming presence of two HR active domains in the $HrpN_{Ep}$. The HR positive N-terminal fragment ($HN{\Delta}C187$) was further narrowed down by deleting C-terminal amino acids and internal amino acids to investigate whether amino acid insertion region have role in faster and stronger HR activity in $HrpN_{Ep}$ than $HrpN_{Ea}$. The $HrpN_{Ep}$ mutant proteins $HN{\Delta}C187$ (D1AIR), $HN{\Delta}C187$ (D2AIR) and $HN{\Delta}C187$ (DM41) retained similar HR activation to that of wild-type $HrpN_{Ep}$. However, the $HrpN_{Ep}$ mutant protein $HN{\Delta}C187$ (D3AIR) lacking third amino acid insertion region (102 to 113 aa) reduced HR when compared to that of wild-type $HrpN_{Ep}$. Reduction in HR elicitation could not be observed when single amino acids at different positions were substituted at third amino acids insertion region. But, substitution of amino acids at L103R, L106K and L110R showed reduction in HR activity on tobacco suggesting their importance in activation of HR faster in the $HrpN_{Ep}$ although it requires further detailed analysis.