References
- Ahn, I. P., Kim, S., Kang, S., Suh, S. C. and Lee, Y. H. 2005a. Rice defense mechanisms against Cochliobolus miyabeanus and Magnaporthe grisea are distinct. Phytopathology 95: 1248-1255. https://doi.org/10.1094/PHYTO-95-1248
- Ahn, I. P., Kim, S. and Lee, Y. H. 2005b. Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol. 138:1505-1515. https://doi.org/10.1104/pp.104.058693
- Alfano, J. R. and Collmer, A. 1997. The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J. Bacteriol. 179:5655-5662. https://doi.org/10.1128/jb.179.18.5655-5662.1997
- Arlat, M., Van Gijsegem, F., Huet, J. C., Pernollet, J. C. and Boucher, C. A. 1994. PopA1, a protein which induces a hypersensitivity- like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J. 13:543-553.
- Beer, S. V., Wei, Z. M., Laby, R. J., He, S. Y., Bauer, D. W., Collmer, A. and Zumoff, C. 1993. Are harpins universal elicitors of the hypersensitive response of phytopathogenic bacteria? In Advances in molecular genetics of plant-microbe intractions, (ed. E. N. Nester and D. P. S. Verma), pp. 281-286. Dordrecht, The Netherlands: Kluwer Academic Publishers.
- Boyes, D. C., Zayed, A. M., Ascenzi, R., McCaskill, A. J., Hoffman, N. E., Davis, K. R. and Gorlach, J. 2001. Growth stagebased phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499- 1510. https://doi.org/10.1105/tpc.13.7.1499
- Cao, H., Bowling, S. A., Gordon, A. S. and Dong, X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583- 1592. https://doi.org/10.1105/tpc.6.11.1583
- Charkowski, A. O., Alfano, J. R., Preston, G., Yuan, J., He, S. Y. and Collmer, A. 1998. The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J. Bacteriol. 180:5211-5217.
- Chuang, H., Harnrak, A., Chen, Y.-C. and Hsu, C.-M. 2010. A harpin-induced ethylene-responsive factor regulates plant growth and responses to biotic and abiotic stresses. Biochem. Biophys. Res. Commun. 402:414-420. https://doi.org/10.1016/j.bbrc.2010.10.047
- Clough, S. J. and Bent, A. F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
- Delaney, T. P., Friedrich, L. and Ryals, J. A. 1995. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. USA 95:6602-6606.
- Dong, H., Delaney, T. P., Bauer, D. W. and Beer, S. V. 1999. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J. 20:207-215. https://doi.org/10.1046/j.1365-313x.1999.00595.x
- Dong, H. P., Peng, J., Bao, Z., Meng, X., Bonasera, J. M., Chen, G., Beer, S. V. and Dong, H. 2004. Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol. 136:3628- 3638. https://doi.org/10.1104/pp.104.048900
- Durrant, W. E. and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185-209. https://doi.org/10.1146/annurev.phyto.42.040803.140421
- Hammond-Kosack, K. E. and Parker, J. E. 2003. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr. Opin. Biotechnol. 14:177-193. https://doi.org/10.1016/S0958-1669(03)00035-1
-
He, S. Y., Huang, H.-C. and Collmer, A. 1993. Pseudomonas syringae pv. syringae
$harpin_{pss}$ : a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73:1255-1266. https://doi.org/10.1016/0092-8674(93)90354-S - Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6:271-282. https://doi.org/10.1046/j.1365-313X.1994.6020271.x
- International Network for Genetic Evaluation of Rice and International Rice Research Institute. 1996. Standard evaluation system for rice. 4th ed. International Rice Research Institute, Manila, Philippines. 18 pp.
- Ji, Z., Song, C., Lu, X. and Wang, J. 2011. Two coiled-coil regions of Xanthomonas oryzae pv. oryzae harpin differ in oligomerization and hypersensitive response induction. Amino Acids 40:381-392. https://doi.org/10.1007/s00726-010-0643-y
- Keen, N. T. 1990. Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet. 24:447-463. https://doi.org/10.1146/annurev.ge.24.120190.002311
- Kim, J. F. and Beer, S. V. 1998. HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J. Bacteriol. 180:5203-5210.
- Kim, J. G., Park, B. K., Yoo, C. H., Jeon, E., Oh, J. and Hwang, I. 2003. Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. J. Bacteriol. 185:3155- 3166. https://doi.org/10.1128/JB.185.10.3155-3166.2003
- Koh, Y. J., Hwang, B. K. and Chung, H. S. 1987. Adult-plant resistance of rice to leaf blast. Phytopathology 77:232-236. https://doi.org/10.1094/Phyto-77-232
- Kvitko, B. H., Ramos, A. R., Morello, J. E., Oh, H.-S. and Collmer, A. 2007. Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. J. Bacteriol. 189:8059-8072. https://doi.org/10.1128/JB.01146-07
- McElroy, D., Zhang, W., Cao, J. and Wu, R. 1990. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163-171. https://doi.org/10.1105/tpc.2.2.163
- Miao, W., Wang, X., Song, C., Wang, Y., Ren, Y. and Wang, J. 2010. Transcriptome analysis of Hpa1Xoo transformed cotton revealed constitutive expression of genes in multiple signaling pathways related to disease resistance. J. Exp. Bot. 61:4263- 4275. https://doi.org/10.1093/jxb/erq227
- Noel, L., Thieme, F., Nennstiel, D. and Bonas, U. 2002. Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J. Bacteriol. 184:1340-1348. https://doi.org/10.1128/JB.184.5.1340-1348.2002
- Peng, J. L., Bao, Z. L., Ren, H. Y., Wang, J. S. and Dong, H. S. 2004. Expression of harpin(xoo) in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 94:1048-1055. https://doi.org/10.1094/PHYTO.2004.94.10.1048
- Perino, C., Gaudriault, S., Vian, B. and Barny, M. A. 1999. Visualization of harpin secretion in planta during infection of apple seedlings by Erwinia amylovora. Cell Microbiol. 1:131-141. https://doi.org/10.1046/j.1462-5822.1999.00013.x
- Reymond, P., Weber, H., Damond, M. and Farmer, E. E. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707-720. https://doi.org/10.1105/tpc.12.5.707
- Thomma, B. P. H. J., Eggermont, K., Penninckz, I. A. M. A., Mauch-Mani, B., Vogelsang, R., Cammue, B. P. A. and Broekaert, W. F. 1998. Separate jasmonate-dependent and salicylate- dependent defense response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95:15107-15111. https://doi.org/10.1073/pnas.95.25.15107
- Thomma, B. P. H. J., Eggermont, K., Tierens, K. F. M.-J. and Broekaert, W. F. 1999. Requirement of functional EIN2 (ethylene insensitive 2) gene for efficient resistance of Arabidopsis thaliana to infection by Botrytis cinerea. Plant Physiol. 121:1093-1101. https://doi.org/10.1104/pp.121.4.1093
- Wei, Z. M., Laby, R. J., Zumoff, C. H., Bauer, D. W., He, S. Y., Collmer, A. and Beer, S. V. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85-88. https://doi.org/10.1126/science.1621099
- Zarembinski, T. I. and Theologis, A. 1997. Expression characteristics of Os-ACS1 and Os-ACS2, two members of the 1-aminocyclopropane- 1-carboxylate synthase gene family in rice (Oryza sativa L. cv. Habiganj Aman II) during partial submergence. Plant Mol. Biol. 33:71-77. https://doi.org/10.1023/B:PLAN.0000009693.26740.c3
- Zhu, W., MaGbanua, M. M. and White, F. F. 2000. Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. oryzae. J. Bacteriol. 182:1844-1853. https://doi.org/10.1128/JB.182.7.1844-1853.2000
Cited by
- Enhancing Production of Terpenoids in Metabolically Engineered Transgenic Spearmint (Mentha spicata L.) by Salt and Fungal Elicitors vol.30, pp.2, 2014, https://doi.org/10.7747/JFS.2014.30.2.243
- Harpins, Multifunctional Proteins Secreted by Gram-Negative Plant-Pathogenic Bacteria vol.26, pp.10, 2013, https://doi.org/10.1094/MPMI-02-13-0050-CR
- The signal peptide-like segment of hpaXm is required for its association to the cell wall in transgenic tobacco plants vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0170931
- Overexpression of a harpin-encoding gene popW in tobacco enhances resistance against Ralstonia solanacearum vol.60, pp.1, 2016, https://doi.org/10.1007/s10535-015-0571-5
- Overexpression of SSBXoc, a Single-Stranded DNA-Binding Protein From Xanthomonas oryzae pv. oryzicola, Enhances Plant Growth and Disease and Salt Stress Tolerance in Transgenic Nicotiana benthamiana vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00953
- Development of PSP1, a Biostimulant Based on the Elicitor AsES for Disease Management in Monocot and Dicot Crops vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00844