• 제목/요약/키워드: harmonic Sobolev space

검색결과 5건 처리시간 0.022초

ON THE BEHAVIOR OF L2 HARMONIC FORMS ON COMPLETE MANIFOLDS AT INFINITY AND ITS APPLICATIONS

  • Yun, Gabjin
    • Korean Journal of Mathematics
    • /
    • 제6권2호
    • /
    • pp.205-212
    • /
    • 1998
  • We investigate the behavior of $L^2$ harmonic one forms on complete manifolds and as an application, we show the space of $L^2$harmonic one forms on a complete Riemannian manifold of nonnegative Ricci curvature outside a compact set with bounded $n/2$-norm of Ricci curvature satisfying the Sobolev inequality is finite dimensional.

  • PDF

FRACTIONAL ORDER SOBOLEV SPACES FOR THE NEUMANN LAPLACIAN AND THE VECTOR LAPLACIAN

  • Kim, Seungil
    • 대한수학회지
    • /
    • 제57권3호
    • /
    • pp.721-745
    • /
    • 2020
  • In this paper we study fractional Sobolev spaces characterized by a norm based on eigenfunction expansions. The goal of this paper is twofold. The first one is to define fractional Sobolev spaces of order -1 ≤ s ≤ 2 equipped with a norm defined in terms of Neumann eigenfunction expansions. Due to the zero Neumann trace of Neumann eigenfunctions on a boundary, fractional Sobolev spaces of order 3/2 ≤ s ≤ 2 characterized by the norm are the spaces of functions with zero Neumann trace on a boundary. The spaces equipped with the norm are useful for studying cross-sectional traces of solutions to the Helmholtz equation in waveguides with a homogeneous Neumann boundary condition. The second one is to define fractional Sobolev spaces of order -1 ≤ s ≤ 1 for vector-valued functions in a simply-connected, bounded and smooth domain in ℝ2. These spaces are defined by a norm based on series expansions in terms of eigenfunctions of the vector Laplacian with boundary conditions of zero tangential component or zero normal component. The spaces defined by the norm are important for analyzing cross-sectional traces of time-harmonic electromagnetic fields in perfectly conducting waveguides.

New Two-Weight Imbedding Inequalities for $\mathcal{A}$-Harmonic Tensors

  • Gao, Hongya;Chen, Yanmin;Chu, Yuming
    • Kyungpook Mathematical Journal
    • /
    • 제47권1호
    • /
    • pp.105-118
    • /
    • 2007
  • In this paper, we first define a new kind of two-weight-$A_r^{{\lambda}_3}({\lambda}_1,{\lambda}_2,{\Omega})$-weight, and then prove the imbedding inequalities for $\mathcal{A}$-harmonic tensors. These results can be used to study the weighted norms of the homotopy operator T from the Banach space $L^p(D,{\bigwedge}^l)$ to the Sobolev space $W^{1,p}(D,{\bigwedge}^{l-1})$, $l=1,2,{\cdots},n$, and to establish the basic weighted $L^p$-estimates for $\mathcal{A}$-harmonic tensors.

  • PDF

STABILITY AND TOPOLOGY OF TRANSLATING SOLITONS FOR THE MEAN CURVATURE FLOW WITH THE SMALL Lm NORM OF THE SECOND FUNDAMENTAL FORM

  • Eungmo, Nam;Juncheol, Pyo
    • 대한수학회보
    • /
    • 제60권1호
    • /
    • pp.171-184
    • /
    • 2023
  • In this paper, we show that a complete translating soliton Σm in ℝn for the mean curvature flow is stable with respect to weighted volume functional if Σ satisfies that the Lm norm of the second fundamental form is smaller than an explicit constant that depends only on the dimension of Σ and the Sobolev constant provided in Michael and Simon [12]. Under the same assumption, we also prove that under this upper bound, there is no non-trivial f-harmonic 1-form of L2f on Σ. With the additional assumption that Σ is contained in an upper half-space with respect to the translating direction then it has only one end.