STABILITY AND TOPOLOGY OF TRANSLATING SOLITONS FOR THE MEAN CURVATURE FLOW WITH THE SMALL L^{m} NORM OF THE SECOND FUNDAMENTAL FORM

Eungmo Nam and Juncheol Pyo

Abstract

In this paper, we show that a complete translating soliton Σ^{m} in \mathbb{R}^{n} for the mean curvature flow is stable with respect to weighted volume functional if Σ satisfies that the L^{m} norm of the second fundamental form is smaller than an explicit constant that depends only on the dimension of Σ and the Sobolev constant provided in Michael and Simon [12]. Under the same assumption, we also prove that under this upper bound, there is no non-trivial f-harmonic 1-form of L_{f}^{2} on Σ. With the additional assumption that Σ is contained in an upper half-space with respect to the translating direction then it has only one end.

1. Introduction

An orientable m-dimensional surface Σ^{m} in \mathbb{R}^{n} is called a translating soliton (or translator) for the mean curvature flow (MCF) if it satisfies

$$
\begin{equation*}
H=V^{\perp} \tag{1.1}
\end{equation*}
$$

where H is the mean curvature vector of $\Sigma \subset \mathbb{R}^{n}, V$ is a constant unit vector field in \mathbb{R}^{n}, and $(\cdot)^{\perp}$ denotes the projection onto the normal bundle of Σ. Translators arise as blow-up models at type II singularities of the MCF. A translator is a special solution of the MCF moving in the direction of V without deforming its shape under the flow. Moreover, it is a minimal submanifold in a conformally flat Riemannian manifold $\left(\mathbb{R}^{n}, e^{\frac{2}{m}\langle V, X\rangle}\langle\rangle,\right)$, where \langle,$\rangle is the$ standard Euclidean metric on \mathbb{R}^{n} and X is the position vector. More precisely, a translator is a critical point of the following weighted volume functional:

$$
\begin{equation*}
\operatorname{Vol}_{f}(\Sigma)=\int_{\Sigma} e^{-f} d \mu \tag{1.2}
\end{equation*}
$$

[^0]where $f=-\langle V, X\rangle$, and $d \mu$ is the induced volume form on $\Sigma \subset \mathbb{R}^{n}$. A translator is said to be f-stable if the second derivative of the weighted volume functional is always non-negative for any normal variation with compact support. Without weight, that is, when $f=0$, a critical point of the usual volume functional is a minimal submanifold.

Let $\bar{\nabla}$ and ∇ be the standard connection on \mathbb{R}^{n} and the induced LeviCivita connection on Σ, respectively. The tangent and normal bundle of Σ are denoted by $T \Sigma$ and $N \Sigma$, respectively, and $(\cdot)^{\top}$ and $(\cdot)^{\perp}$ denote the projection of a vector field in \mathbb{R}^{n} along the immersion onto $T \Sigma$ and $N \Sigma$, respectively. Then, the second fundamental form of an immersion $B: T \Sigma \times T \Sigma \rightarrow N \Sigma$ is defined by $B(Y, Z)=\left(\bar{\nabla}_{Y} Z\right)^{\perp}$, where Y and Z are tangent vector fields on Σ. Choose a local orthonormal frame field $\left\{e_{i}, e_{\alpha}\right\}$ of Σ, where $\left\{e_{i}: 1 \leq i \leq m\right\}$ is tangent to Σ and $\left\{e_{\alpha}: m+1 \leq \alpha \leq n\right\}$ is normal to Σ. The mean curvature vector is given by the trace of the second fundamental form; $H=\operatorname{Trace}(B)=$ $\sum_{i=1}^{m} B\left(e_{i}, e_{i}\right) \in \Gamma(N \Sigma)$. And the squared norm of the second fundamental form is defined by $|B|^{2}=\sum_{\alpha} \sum_{i, j}\left\langle B\left(e_{i}, e_{j}\right), e_{\alpha}\right\rangle^{2}$.

For a submanifold $\Sigma^{m} \subset \mathbb{R}^{n}$, the L^{m} norm of the second fundamental form, $\int_{\Sigma}|B|^{m} d \mu$ has been intensively studied. For a minimal submanifold Σ, it is equivalent to the total scalar curvature. Using an estimate on the L^{m} norm of the second fundamental form of Σ, it is possible to determine some properties of Σ, such as stability, topological properties, and shape. Among many significant results, Spruck [18] proved that $\Sigma^{m \geq 3}$ is stable if the L^{m} norm of the second fundamental form of Σ is less than a constant that depends only on the dimension of Σ. Furthermore, Wang [19] proved that a stable minimal submanifold $\Sigma^{m \geq 3}$ is an affine m-plane, if the second fundamental form satisfies $|B| \in L^{m}(\Sigma)$ (for the hypersurface case proved by Shen and Zhu [17]). With the similar assumption as [18], $\mathrm{Ni}[14]$ and Seo [16] deduced the topology of Σ (more precisely, the number of ends). In other directions, Palmer [15], Miyaoka [13] and Seo [16] studied the L^{2} harmonic forms.

In this study, we further evaluate translators with the small L^{m} norm of the second fundamental form and determine three properties that hold even for translators of higher codimension. For the stability of translators, in Section 3 , we first prove that:
Let $\Sigma^{m \geq 3}$ be a complete translator immersed in \mathbb{R}^{n}. If Σ satisfies $\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{1}{m}}$ $\leq C(m)$, then Σ is an f-stable translator. In fact, it is super f-stable.

In Section 4, based on the L^{2} harmonic form theory developed by Palmer [15], Miyaoka [13] and Seo [16], we second prove that:
Let $\Sigma^{m \geq 3}$ be a complete translator immersed in \mathbb{R}^{n}. If $\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{1}{m}}<C(m)$, then Σ admits no non-trivial f-harmonic 1-form of L_{f}^{2}.

Since the height function in the given V direction has no local maximum, there is no compact translator. Thus, one significant topological property is the number of ends, i.e., the connected components outside of a compact geodesic
ball, which is sufficiently large. For the topological ends of translators, in Section 5, we finally prove that:
Let $\Sigma^{m \geq 3}$ be a complete translator immersed in \mathbb{R}^{n} with being contained in the half-space $\Pi_{V, a}=\left\{p \in \mathbb{R}^{n}:\langle p, V\rangle \geq a\right\}$ for some $a \in \mathbb{R}$. If $\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{1}{m}}<$ $C(m)$, then Σ has only one end.

There are many interesting results in translators analogous to minimal submanifolds. For the Bernstein-type theorem, Impera and Rimoldi [5] showed that if an f-stable translator Σ^{m} in \mathbb{R}^{m+1} satisfies $|B| \in L_{f}^{2}(\Sigma)$, then Σ is a translator hyperplane parallel to the direction of translator, V. In previous works on higher codimensional translators, Xin [20] proved that an m dimensional translator Σ^{m} in \mathbb{R}^{n} satisfying both $\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{1}{m}} \leq \tilde{C}(m)$ and $|B| \in L_{f}^{m}(\Sigma)$ is an affine m-plane parallel to V. Since the condition $|B| \in$ $L_{f}^{m}(\Sigma)$ is too restrictive for the quantity $|B|$, the larger the height of Σ in the direction of V, it is important to note that, in the main theorems, we only assume the condition for the L^{m} norm of the second fundamental form of a given translator, which is smaller than an explicit constant. In other directions, Ku nikawa $[9,10]$ showed rigidity results under natural geometric conditions, such as a flat normal bundle or parallel principal normal.

2. Preliminaries

From the first variation formula of the weighted volume functional (1.2), we obtain

$$
\left.\frac{d}{d t} \operatorname{Vol}_{f}(\Sigma)\right|_{t=0}=\int_{\Sigma}\langle V-H, E\rangle e^{-f} d \mu
$$

where $E=\varphi \nu$ is a normal variational vector field with compact support on Σ. More precisely, ν is a unit normal vector field of Σ in \mathbb{R}^{n} and φ is any compactly supported smooth function on Σ.

From the second variation formula of the weighted volume functional, we obtain (see [20])

$$
\left.\frac{d^{2}}{d t^{2}} \operatorname{Vol}_{f}(\Sigma)\right|_{t=0}=\int_{\Sigma}\left(\left|\nabla^{\perp} E\right|^{2}-\sum_{i, j}\left\langle B\left(e_{i}, e_{j}\right), E\right\rangle^{2}\right) e^{-f} d \mu
$$

where ∇^{\perp} is the normal connection on Σ. If $\left.\frac{d^{2}}{d t^{2}} \operatorname{Vol}_{f}(\Sigma)\right|_{t=0} \geq 0$ for any normal variation, then Σ is called f-stable.

A direct computation gives the following (see [18], [20] for more details)

$$
\int_{\Sigma}\left(\left|\nabla^{\perp} E\right|^{2}-\sum_{i, j}\left\langle B\left(e_{i}, e_{j}\right), E\right\rangle^{2}\right) e^{-f} d \mu \geq \int_{\Sigma}\left(|\nabla \varphi|^{2}-|B|^{2} \varphi^{2}\right) e^{-f} d \mu
$$

Following Wang [19], we denote that if $\int_{\Sigma}\left(|\nabla \varphi|^{2}-|B|^{2} \varphi^{2}\right) e^{-f} d \mu \geq 0$, then Σ is called super f-stable. It is clear that if Σ is super f-stable, then it is
f-stable. The super f-stability coincides with the f-stability when Σ is a hypersurface.

Next, we recall the Sobolev inequality. In [12], Michael and Simon obtained the general Sobolev inequality for the C^{2} submanifold Σ^{m} in \mathbb{R}^{n} :

$$
\left(\int_{\Sigma} h^{\frac{m}{m-1}} d \mu\right)^{\frac{m-1}{m}} \leq S(m) \int_{\Sigma}(|\nabla h|+h|H|) d \mu
$$

where $0 \leq \forall h \in C_{0}^{1}(\Sigma), S(m)$ is the Sobolev constant, and H is the mean curvature vector of Σ in \mathbb{R}^{n}. By substituting $h=u^{\frac{2(m-1)}{m-2}}$ and then using Hölder inequality and Young inequality, one can obtain the following L^{2} Sobolev inequality (for example, see [20]):

$$
\begin{equation*}
S_{0}(m)\left(\int_{\Sigma} u^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}} \leq \int_{\Sigma}|\nabla u|^{2} d \mu+\frac{1}{2} \int_{\Sigma}|H|^{2} u^{2} d \mu \tag{2.1}
\end{equation*}
$$

where $0 \leq u \in C_{0}^{1}(\Sigma)$ and $S_{0}(m)=\frac{(m-2)^{2}}{\left(6 m^{2}-14 m+8\right) S(m)^{2}}$.
Given a complete translator $\Sigma \subset \mathbb{R}^{n}$, an end of Σ is a connected component of $\Sigma \backslash B_{p}(R)$, where $B_{p}(R) \subset \Sigma$ is the geodesic ball centered at $p \in \Sigma$ with a sufficiently large $R>0$ as radius. Using the weighted L^{1} Sobolev inequality on translators, we obtain:

Lemma 1. Every end of a complete translator contained in the upper half-space $\Pi_{V, a}=\left\{p \in \mathbb{R}^{n}:\langle p, V\rangle \geq a, a \in \mathbb{R}\right\}$ is non-f-parabolic.

Here, the condition of being in the upper half-space needs to apply the weighted L^{1} Sobolev inequality on translators. See [5], [6] for more details.

The rotationally symmetric translators, translating bowl, and winglike translators $[1,3,7]$, grim-reaper cylinders, and Δ-wings $[4]$ are contained in the upper half-space $\Pi_{V, a}$. Kim and the second author [8] show that a half-space type theorem for translators.

Recall that the Bakry-Émery Ricci tensor of Σ is defined by

$$
\operatorname{Ric}_{f}(Y, Y)=\operatorname{Ric}(Y, Y)+\operatorname{Hess}(f)(Y, Y),
$$

where Y is a tangent vector field on Σ, Ric stands for the Ricci curvature of Σ and $\operatorname{Hess}(f)$ stands for the hessian of f on Σ. Using the Gauss equation, we obtain (see [5] for more details),

$$
\begin{equation*}
\operatorname{Ric}_{f}(Y, Y) \geq-|B|^{2}|Y|^{2} \tag{2.2}
\end{equation*}
$$

This gives a useful Bochner-type formula:
Lemma 2. Let u be an f-harmonic function on Σ. Then

$$
\frac{1}{2} \Delta_{f}\left(|\nabla u|^{2}\right) \geq \mid \text { Hess }\left.u\right|^{2}-|B|^{2}|\nabla u|^{2}
$$

where $\Delta_{f}(\cdot)=\Delta(\cdot)-\langle\nabla f, \nabla(\cdot)\rangle$ is the weighted Laplacian on Σ.

This is derived from applying (2.2) to the weighted version of Bochner formula,

$$
\frac{1}{2} \Delta_{f}\left(|\nabla u|^{2}\right)=|\operatorname{Hess} u|^{2}+\operatorname{Ric}_{f}(\nabla u, \nabla u)+\left\langle\nabla \Delta_{f} u, \nabla u\right\rangle
$$

and using the fact that u is f-harmonic.
Finally, we study the f-harmonic 1 -form of L_{f}^{2}. Let ω be a smooth 1-form on Σ. Recall that ω is called an f-harmonic 1 -form of L_{f}^{2} on Σ if

$$
\int_{\Sigma}|\xi|^{2} e^{-f} d \mu<\infty \text { and } \Delta_{f} \omega=0
$$

where ξ is the dual vector field of ω on Σ, and $\Delta_{f}(\cdot)$ stands for the weighted Laplacian acting on the space of smooth 1 -forms on Σ. In the particular case that Σ is a hypersurface contained in the upper half-space in the translating direction, if Σ has no non-trivial f-harmonic 1 -form of L_{f}^{2}, then Σ admits no codimension one cycle which does not disconnect Σ. For more details about the f-harmonic form of L_{f}^{2} theory and codimension one cycle, see [11] and the references therein.

3. Stability of translators

Theorem 3. Let $\Sigma^{m \geq 3}$ be a complete translator immersed in \mathbb{R}^{n}. If Σ satisfies $\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{1}{m}} \leq C(m)$, then Σ is an f-stable translator. In fact, it is super f-stable. Here, $C(m)=\frac{\sqrt{2}(m-2)}{S(m) \sqrt{\left(6 m^{2}-14 m+8\right)(m+2)}}$.
Proof. We prove by contradiction. If we suppose that Σ is not super f-stable, then for a suitable $\varphi \in C_{0}^{\infty}(\Sigma)$,

$$
\begin{equation*}
\int_{\Sigma}|\nabla \varphi|^{2} e^{-f} d \mu<\int_{\Sigma}|B|^{2} \varphi^{2} e^{-f} d \mu \tag{3.1}
\end{equation*}
$$

where $f=-\langle X, V\rangle$. By Hölder inequality, the RHS becomes

$$
\begin{equation*}
\int_{\Sigma}|B|^{2} \varphi^{2} e^{-f} d \mu \leq\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}}\left(\int_{\Sigma}\left(\varphi^{2} e^{-f}\right)^{\frac{m}{m-2}} d \mu\right)^{\frac{m-2}{m}} \tag{3.2}
\end{equation*}
$$

On the other hand, let $\psi=\varphi e^{-\frac{f}{2}}$, then

$$
|\nabla \psi|^{2}=|\nabla \varphi|^{2} e^{-f}+\frac{1}{4}|\nabla f|^{2} \varphi^{2} e^{-f}-\langle\nabla \varphi, \nabla f\rangle \varphi e^{-f}
$$

We claim that

$$
\begin{equation*}
\int_{\Sigma} \frac{1}{4}|\nabla f|^{2} \varphi^{2} e^{-f} d \mu-\int_{\Sigma}\langle\nabla \varphi, \nabla f\rangle \varphi e^{-f} d \mu<0 \tag{3.3}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\int_{\Sigma}|\nabla \psi|^{2} d \mu<\int_{\Sigma}|\nabla \varphi|^{2} e^{-f} d \mu \tag{3.4}
\end{equation*}
$$

Because φ is compactly supported in Σ, by applying the divergence theorem on $\int_{\Sigma} \operatorname{div}\left(\varphi^{2} \nabla f e^{-f}\right) d \mu$, we obtain

$$
\begin{equation*}
\int_{\Sigma}\left(\left\langle\nabla\left(\varphi^{2}\right), \nabla f\right\rangle+\varphi^{2} \Delta f-\varphi^{2}|\nabla f|^{2}\right) e^{-f} d \mu=0 \tag{3.5}
\end{equation*}
$$

To analyze this equation, we consider the following identity from (1.1):

$$
\begin{equation*}
\Delta f=\operatorname{div}\left(-V^{\top}\right)=\operatorname{div}\left(V^{\perp}\right)=-\left\langle H, V^{\perp}\right\rangle=-\left|V^{\perp}\right|^{2} \tag{3.6}
\end{equation*}
$$

Applying (3.5) and (3.6) to the LHS of (3.3), we have

$$
\begin{aligned}
& \int_{\Sigma} \frac{1}{4}|\nabla f|^{2} \varphi^{2} e^{-f} d \mu-\int_{\Sigma}\langle\nabla \varphi, \nabla f\rangle \varphi e^{-f} d \mu \\
= & -\frac{1}{4} \int_{\Sigma}|\nabla f|^{2} \varphi^{2} e^{-f} d \mu-\frac{1}{2} \int_{\Sigma} \varphi^{2}\left|V^{\perp}\right|^{2} e^{-f} d \mu<0 .
\end{aligned}
$$

Thus, we obtain (3.4). Combining this result with (3.1) and (3.2), we obtain

$$
\int_{\Sigma}|\nabla \psi|^{2} d \mu<\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}}\left(\int_{\Sigma} \psi^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}}
$$

Applying the previous Sobolev inequality (2.1) to ψ,

$$
S_{0}(m)\left(\int_{\Sigma} \psi^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}} \leq \int_{\Sigma}|\nabla \psi|^{2} d \mu+\frac{1}{2} \int_{\Sigma}|H|^{2} \psi^{2} d \mu
$$

For the last term, by Hölder inequality,

$$
\frac{1}{2} \int_{\Sigma}|H|^{2} \psi^{2} d \mu \leq \frac{1}{2}\left(\int_{\Sigma}|H|^{m} d \mu\right)^{\frac{2}{m}}\left(\int_{\Sigma} \psi^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}}
$$

Thus, we obtain

$$
\begin{aligned}
& S_{0}(m)\left(\int_{\Sigma} \psi^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}} \\
< & \left(\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}}+\frac{1}{2}\left(\int_{\Sigma}|H|^{m} d \mu\right)^{\frac{2}{m}}\right)\left(\int_{\Sigma} \psi^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}} .
\end{aligned}
$$

Cauchy-Schwarz inequality gives

$$
\left(\int_{\Sigma}|H|^{m} d \mu\right)^{\frac{2}{m}} \leq m\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}}
$$

Applying this to the preceding inequality and canceling $\left(\int_{\Sigma} \psi^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}}$ on both sides, we obtain

$$
S_{0}(m)<\left(1+\frac{m}{2}\right)\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}}
$$

Let $C(m)=\sqrt{\frac{2 S_{0}(m)}{m+2}}$. Thus, $C(m)<\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{1}{m}}$. This contradicts to the prior assumption. Thus, the proof is complete.

4. f-harmonic 1-forms of L_{f}^{2} on translators

Theorem 4. Let $\Sigma^{m \geq 3}$ be a complete translator immersed in \mathbb{R}^{n}. If

$$
\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{1}{m}}<C(m)
$$

then Σ admits no non-trivial f-harmonic 1-form of L_{f}^{2}.
Proof. Let ω be an f-harmonic 1-form of L_{f}^{2} on Σ, and ξ be the dual vector field of ω on Σ. From the weighted version of the Bochner formula and (2.2), we obtain

$$
\begin{equation*}
\frac{1}{2} \Delta_{f}\left(|\xi|^{2}\right) \geq|\nabla \xi|^{2}-|B|^{2}|\xi|^{2} \tag{4.1}
\end{equation*}
$$

By a direct computation for the LHS,

$$
\begin{aligned}
\frac{1}{2} \Delta_{f}\left(|\xi|^{2}\right) & \left.\geq \frac{1}{2}\left(\Delta\left(|\xi|^{2}\right)-\left.\langle\nabla f, \nabla| \xi\right|^{2}\right\rangle\right) \\
& =|\nabla| \xi| |^{2}+|\xi| \Delta|\xi|-|\xi|\langle\nabla f, \nabla| \xi| \rangle
\end{aligned}
$$

Based on (4.1),

$$
|\xi| \Delta|\xi|+|B|^{2}|\xi|^{2}=|\nabla \xi|^{2}+|\xi|\langle\nabla f, \nabla| \xi| \rangle-|\nabla| \xi| |^{2} \geq|\xi|\langle\nabla f, \nabla| \xi| \rangle .
$$

Here, we use the Kato inequality, that is,

$$
|\nabla \xi|^{2}-|\nabla| \xi| |^{2} \geq 0
$$

Let $\varphi=|\xi|$. Then, we can rewrite

$$
\begin{equation*}
\varphi \Delta \varphi+|B|^{2} \varphi^{2} \geq \varphi\langle\nabla f, \nabla \varphi\rangle \tag{4.2}
\end{equation*}
$$

For a fixed point $p \in \Sigma$ and $R>0$, we choose a suitable cut-off function η that satisfies

$$
\eta=\left\{\begin{array}{ll}
1 & \text { on } B_{p}(R) \\
0 & \text { on } \Sigma \backslash B_{p}(2 R)
\end{array} \quad \text { and } \quad|\nabla \eta| \leq \frac{1}{R} \text { on } B_{p}(2 R) \backslash B_{p}(R)\right.
$$

where $B_{p}(R) \subset \Sigma$ is the geodesic ball. Multiplying both sides by $\eta^{2} e^{-f}$ on (4.2) and integrating over Σ,

$$
\begin{equation*}
\int_{\Sigma} \eta^{2} \varphi \Delta \varphi e^{-f} d \mu+\eta^{2}|B|^{2} \varphi^{2} e^{-f} d \mu \geq \int_{\Sigma} \eta^{2} \varphi\langle\nabla f, \nabla \varphi\rangle e^{-f} d \mu \tag{4.3}
\end{equation*}
$$

Because η is compactly supported on Σ, applying the divergence theorem on $\int_{\Sigma} \operatorname{div}\left(\eta^{2} \varphi \nabla \varphi e^{-f}\right) d \mu$, we obtain

$$
\begin{aligned}
\int_{\Sigma} \eta^{2} \varphi \Delta \varphi e^{-f} d \mu= & \int_{\Sigma} \eta^{2} \varphi\langle\nabla \varphi, \nabla f\rangle e^{-f} d \mu-\int_{\Sigma} 2 \eta \varphi\langle\nabla \eta, \nabla \varphi\rangle e^{-f} d \mu \\
& -\int_{\Sigma} \eta^{2}|\nabla \varphi|^{2} e^{-f} d \mu
\end{aligned}
$$

Using (4.3),

$$
\int_{\Sigma} \eta^{2}|B|^{2} \varphi^{2} e^{-f} d \mu \geq \int_{\Sigma} \eta^{2}|\nabla \varphi|^{2} e^{-f} d \mu+\int_{\Sigma} 2 \eta \varphi\langle\nabla \eta, \nabla \varphi\rangle e^{-f} d \mu
$$

By the Schwarz inequality, for any $a>0$, we obtain

$$
\begin{equation*}
\int_{\Sigma} \eta^{2}|B|^{2} \varphi^{2} e^{-f} d \mu \geq(1-a) \int_{\Sigma} \eta^{2}|\nabla \varphi|^{2} e^{-f} d \mu-\frac{1}{a} \int_{\Sigma} \varphi^{2}|\nabla \eta|^{2} e^{-f} d \mu \tag{4.4}
\end{equation*}
$$

Because $\varphi \eta$ is compactly supported in Σ, we can apply (3.4) to $\varphi \eta$,

$$
\begin{equation*}
\int_{\Sigma}|\nabla(\varphi \eta)|^{2} e^{-f} d \mu>\int_{\Sigma}\left|\nabla\left(\varphi \eta e^{-\frac{f}{2}}\right)\right|^{2} d \mu \tag{4.5}
\end{equation*}
$$

Applying the previous Sobolev inequality (2.1) to $\varphi \eta e^{-\frac{f}{2}}$,

$$
\begin{align*}
& \int_{\Sigma}\left|\nabla\left(\varphi \eta e^{-\frac{f}{2}}\right)\right|^{2} d \mu \\
\geq & S_{0}(m)\left(\int_{\Sigma}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}}-\frac{1}{2} \int_{\Sigma}|H|^{2}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{2} d \mu \tag{4.6}
\end{align*}
$$

By a direct computation,

$$
\begin{equation*}
\int_{\Sigma}|\nabla(\varphi \eta)|^{2} e^{-f} d \mu=\int_{\Sigma}\left(|\nabla \varphi|^{2} \eta^{2}+2 \varphi \eta\langle\nabla \varphi, \nabla \eta\rangle+\varphi^{2}|\nabla \eta|^{2}\right) e^{-f} d \mu \tag{4.7}
\end{equation*}
$$

By the Schwarz inequality, for any $b>0$, we obtain

$$
\begin{align*}
& \int_{\Sigma}\left(|\nabla \varphi|^{2} \eta^{2}+2 \varphi \eta\langle\nabla \varphi, \nabla \eta\rangle+\varphi^{2}|\nabla \eta|^{2}\right) e^{-f} d \mu \tag{4.8}\\
\leq & (1+b) \int_{\Sigma}|\nabla \varphi|^{2} \eta^{2} e^{-f} d \mu+\left(1+\frac{1}{b}\right) \int_{\Sigma}|\nabla \eta|^{2} \varphi^{2} e^{-f} d \mu
\end{align*}
$$

Combining (4.5), (4.6), (4.7), and (4.8),

$$
\begin{align*}
& (1+b) \int_{\Sigma}|\nabla \varphi|^{2} \eta^{2} e^{-f} d \mu \\
> & \int_{\Sigma}\left|\nabla\left(\varphi \eta e^{-\frac{f}{2}}\right)\right|^{2} d \mu-\left(1+\frac{1}{b}\right) \int_{\Sigma}|\nabla \eta|^{2} \varphi^{2} e^{-f} d \mu \\
\geq & S_{0}(m)\left(\int_{\Sigma}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}}-\frac{1}{2} \int_{\Sigma}|H|^{2}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{2} d \mu \tag{4.9}\\
& -\left(1+\frac{1}{b}\right) \int_{\Sigma}|\nabla \eta|^{2} \varphi^{2} e^{-f} d \mu .
\end{align*}
$$

For the LHS in (4.4), by Hölder inequality,

$$
\begin{equation*}
\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}}\left(\int_{\Sigma}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}} \geq \int_{\Sigma} \eta^{2}|B|^{2} \varphi^{2} e^{-f} d \mu \tag{4.10}
\end{equation*}
$$

Combining (4.4) and (4.9), and (4.10), we obtain

$$
\begin{aligned}
&\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}}\left(\int_{\Sigma}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}} \\
&>-\frac{1}{a} \int_{\Sigma} \varphi^{2}|\nabla \eta|^{2} e^{-f} d \mu \\
&+ \frac{1-a}{1+b}\left(S_{0}(m)\left(\int_{\Sigma}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{\frac{2 m}{m-2}}\right)^{\frac{m-2}{m}}-\frac{1}{2} \int_{\Sigma}|H|^{2}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{2}\right. \\
&\left.\quad-\left(1+\frac{1}{b}\right) \int_{\Sigma}|\nabla \eta|^{2} \varphi^{2} e^{-f}\right) .
\end{aligned}
$$

We can rewrite

$$
\begin{align*}
& \left(\frac{(1-a)\left(1+\frac{1}{b}\right)}{1+b}+\frac{1}{a}\right) \int_{\Sigma} \varphi^{2}|\nabla \eta|^{2} e^{-f} d \mu \\
> & \left(\frac{1-a}{1+b} S_{0}(m)-\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}}\right)\left(\int_{\Sigma}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}} \tag{4.11}\\
& -\frac{1-a}{2(1+b)} \int_{\Sigma}|H|^{2}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{2} d \mu
\end{align*}
$$

By Hölder inequality,

$$
\begin{equation*}
\int_{\Sigma}|H|^{2}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{2} d \mu \leq\left(\int_{\Sigma}|H|^{m} d \mu\right)^{\frac{2}{m}}\left(\int_{\Sigma}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}} \tag{4.12}
\end{equation*}
$$

Cauchy-Schwarz inequality gives

$$
\begin{equation*}
\left(\int_{\Sigma}|H|^{m} d \mu\right)^{\frac{2}{m}} \leq m\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}} \tag{4.13}
\end{equation*}
$$

Combining (4.11), (4.12) and (4.13), we obtain

$$
\begin{aligned}
& \left(\frac{(1-a)\left(1+\frac{1}{b}\right)}{1+b}+\frac{1}{a}\right) \int_{\Sigma} \varphi^{2}|\nabla \eta|^{2} e^{-f} d \mu \\
> & \left(\frac{1-a}{1+b} S_{0}(m)-\left(1+\frac{m(1-a)}{2(1+b)}\right)\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}}\right)\left(\int_{\Sigma}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}} .
\end{aligned}
$$

Next, a and b are chosen to be sufficiently small such that

$$
\left(\frac{1-a}{1+b} S_{0}(m)-\left(1+\frac{m(1-a)}{2(1+b)}\right)\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}}\right) \geq \epsilon>0
$$

As $R \rightarrow \infty$, we obtain $\varphi \equiv 0$, that is, $\xi \equiv 0$. Since ξ is arbitrary, Σ has no non-trivial f-harmonic 1-form of L_{f}^{2}.

5. Topology of translators

Theorem 5. Let $\Sigma^{m \geq 3}$ be a complete translator immersed in \mathbb{R}^{n} with being contained in the upper half-space $\Pi_{V, a}=\left\{p \in \mathbb{R}^{n}:\langle p, V\rangle \geq a\right\}$ for some a. If $\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{1}{m}}<C(m)$, then Σ has only one end.
Proof. We reason by contradiction. Suppose that Σ has at least two ends. Because every end of Σ contained in $\Pi_{V, a}$ is non- f-parabolic, there exists a nonconstant bounded f-harmonic function that has finite total weighted energy. See [2], [5] and [6] for details.

Let u be such an f-harmonic function. Then, we obtain

$$
\begin{equation*}
\frac{1}{2} \Delta_{f}\left(|\nabla u|^{2}\right) \geq \mid \text { Hess }\left.u\right|^{2}-|B|^{2}|\nabla u|^{2} \tag{5.1}
\end{equation*}
$$

By a direct computation for the LHS,

$$
\begin{aligned}
\frac{1}{2} \Delta_{f}\left(|\nabla u|^{2}\right) & \left.=\frac{1}{2}\left(\Delta\left(|\nabla u|^{2}\right)-\left.\langle\nabla f, \nabla| \nabla u\right|^{2}\right\rangle\right) \\
& =|\nabla| \nabla u| |^{2}+|\nabla u| \Delta|\nabla u|-|\nabla u|\langle\nabla f, \nabla| \nabla u| \rangle .
\end{aligned}
$$

Based on (5.1),

$$
\begin{aligned}
|\nabla u| \Delta|\nabla u|+|B|^{2}|\nabla u|^{2} & \geq|\operatorname{Hess} u|^{2}+|\nabla u|\langle\nabla f, \nabla| \nabla u| \rangle-\left.|\nabla| \nabla u\right|^{2} \\
& \geq|\nabla u|\langle\nabla f, \nabla| \nabla u| \rangle .
\end{aligned}
$$

Here, we use the Kato inequality, that is,

$$
\mid \text { Hess }\left.u\right|^{2}-\left.|\nabla| \nabla u\right|^{2} \geq 0
$$

Let $\varphi=|\nabla u|$. Then, we can rewrite

$$
\begin{equation*}
\varphi \Delta \varphi+|B|^{2} \varphi^{2} \geq \varphi\langle\nabla f, \nabla \varphi\rangle \tag{5.2}
\end{equation*}
$$

For a fixed point $p \in \Sigma$ and $R>0$, we choose a suitable cut-off function η that satisfies

$$
\eta=\left\{\begin{array}{ll}
1 & \text { on } B_{p}(R) \\
0 & \text { on } \Sigma \backslash B_{p}(2 R)
\end{array} \quad \text { and }|\nabla \eta| \leq \frac{1}{R} \text { on } B_{p}(2 R) \backslash B_{p}(R),\right.
$$

where $B_{p}(R) \subset \Sigma$ is the geodesic ball of centered at p with radius R. Multiplying both sides by $\eta^{2} e^{-f}$ on (5.2) and integrating over Σ,

$$
\begin{equation*}
\int_{\Sigma} \eta^{2} \varphi \Delta \varphi e^{-f} d \mu+\eta^{2}|B|^{2} \varphi^{2} e^{-f} d \mu \geq \int_{\Sigma} \eta^{2} \varphi\langle\nabla f, \nabla \varphi\rangle e^{-f} d \mu \tag{5.3}
\end{equation*}
$$

Because η is compactly supported on Σ, applying the divergence theorem on $\int_{\Sigma} \operatorname{div}\left(\eta^{2} \varphi \nabla \varphi e^{-f}\right) d \mu$, we obtain

$$
\begin{aligned}
\int_{\Sigma} \eta^{2} \varphi \Delta \varphi e^{-f} d \mu= & \int_{\Sigma} \eta^{2} \varphi\langle\nabla \varphi, \nabla f\rangle e^{-f} d \mu-\int_{\Sigma} 2 \eta \varphi\langle\nabla \eta, \nabla \varphi\rangle e^{-f} d \mu \\
& -\int_{\Sigma} \eta^{2}|\nabla \varphi|^{2} e^{-f} d \mu
\end{aligned}
$$

Using (5.3),

$$
\int_{\Sigma} \eta^{2}|B|^{2} \varphi^{2} e^{-f} d \mu \geq \int_{\Sigma} \eta^{2}|\nabla \varphi|^{2} e^{-f} d \mu+\int_{\Sigma} 2 \eta \varphi\langle\nabla \eta, \nabla \varphi\rangle e^{-f} d \mu
$$

By the Schwarz inequality, for any $a>0$, we obtain

$$
\begin{equation*}
\int_{\Sigma} \eta^{2}|B|^{2} \varphi^{2} e^{-f} d \mu \geq(1-a) \int_{\Sigma} \eta^{2}|\nabla \varphi|^{2} e^{-f} d \mu-\frac{1}{a} \int_{\Sigma} \varphi^{2}|\nabla \eta|^{2} e^{-f} d \mu \tag{5.4}
\end{equation*}
$$

Because $\varphi \eta$ is compactly supported in Σ, we can apply (3.4) to $\varphi \eta$,

$$
\begin{equation*}
\int_{\Sigma}|\nabla(\varphi \eta)|^{2} e^{-f} d \mu>\int_{\Sigma}\left|\nabla\left(\varphi \eta e^{-\frac{f}{2}}\right)\right|^{2} d \mu \tag{5.5}
\end{equation*}
$$

Applying the previous Sobolev inequality (2.1) to $\varphi \eta e^{-\frac{f}{2}}$,

$$
\begin{align*}
& \int_{\Sigma}\left|\nabla\left(\varphi \eta e^{-\frac{f}{2}}\right)\right|^{2} d \mu \\
\geq & S_{0}(m)\left(\int_{\Sigma}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}}-\frac{1}{2} \int_{\Sigma}|H|^{2}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{2} d \mu \tag{5.6}
\end{align*}
$$

By a direct computation,

$$
\begin{equation*}
\int_{\Sigma}|\nabla(\varphi \eta)|^{2} e^{-f} d \mu=\int_{\Sigma}\left(|\nabla \varphi|^{2} \eta^{2}+2 \varphi \eta\langle\nabla \varphi, \nabla \eta\rangle+\varphi^{2}|\nabla \eta|^{2}\right) e^{-f} d \mu \tag{5.7}
\end{equation*}
$$

By the Schwarz inequality, for any $b>0$, we obtain

$$
\begin{align*}
& \int_{\Sigma}\left(|\nabla \varphi|^{2} \eta^{2}+2 \varphi \eta\langle\nabla \varphi, \nabla \eta\rangle+\varphi^{2}|\nabla \eta|^{2}\right) e^{-f} d \mu \\
\leq & (1+b) \int_{\Sigma}|\nabla \varphi|^{2} \eta^{2} e^{-f} d \mu+\left(1+\frac{1}{b}\right) \int_{\Sigma}|\nabla \eta|^{2} \varphi^{2} e^{-f} d \mu \tag{5.8}
\end{align*}
$$

Combining (5.5), (5.6), (5.7), and (5.8),

$$
\begin{align*}
& (1+b) \int_{\Sigma}|\nabla \varphi|^{2} \eta^{2} e^{-f} d \mu \\
> & \int_{\Sigma}\left|\nabla\left(\varphi \eta e^{-\frac{f}{2}}\right)\right|^{2} d \mu-\left(1+\frac{1}{b}\right) \int_{\Sigma}|\nabla \eta|^{2} \varphi^{2} e^{-f} d \mu \\
\geq & S_{0}(m)\left(\int_{\Sigma}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}}-\frac{1}{2} \int_{\Sigma}|H|^{2}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{2} d \mu \tag{5.9}\\
& -\left(1+\frac{1}{b}\right) \int_{\Sigma}|\nabla \eta|^{2} \varphi^{2} e^{-f} d \mu .
\end{align*}
$$

For the LHS in (5.4), by Hölder inequality,

$$
\begin{equation*}
\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}}\left(\int_{\Sigma}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}} \geq \int_{\Sigma} \eta^{2}|B|^{2} \varphi^{2} e^{-f} d \mu \tag{5.10}
\end{equation*}
$$

Combining (5.4), (5.9), and (5.10), we obtain

$$
\begin{aligned}
& \left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}}\left(\int_{\Sigma}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}} \\
> & -\frac{1}{a} \int_{\Sigma} \varphi^{2}|\nabla \eta|^{2} e^{-f} d \mu \\
& +\frac{1-a}{1+b}\left(S_{0}(m)\left(\int_{\Sigma}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{\frac{2 m}{m-2}}\right)^{\frac{m-2}{m}}-\frac{1}{2} \int_{\Sigma}|H|^{2}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{2}\right. \\
& \left.\quad-\left(1+\frac{1}{b}\right) \int_{\Sigma}|\nabla \eta|^{2} \varphi^{2} e^{-f}\right) .
\end{aligned}
$$

We can rewrite

$$
\begin{align*}
& \left(\frac{(1-a)\left(1+\frac{1}{b}\right)}{1+b}+\frac{1}{a}\right) \int_{\Sigma} \varphi^{2}|\nabla \eta|^{2} e^{-f} d \mu \\
> & \left(\frac{1-a}{1+b} S_{0}(m)-\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}}\right)\left(\int_{\Sigma}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}} \tag{5.11}\\
& -\frac{1-a}{2(1+b)} \int_{\Sigma}|H|^{2}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{2} d \mu .
\end{align*}
$$

By Hölder inequality,

$$
\begin{equation*}
\int_{\Sigma}|H|^{2}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{2} d \mu \leq\left(\int_{\Sigma}|H|^{m} d \mu\right)^{\frac{2}{m}}\left(\int_{\Sigma}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}} \tag{5.12}
\end{equation*}
$$

Cauchy-Schwarz inequality gives

$$
\begin{equation*}
\left(\int_{\Sigma}|H|^{m} d \mu\right)^{\frac{2}{m}} \leq m\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}} \tag{5.13}
\end{equation*}
$$

Combining (5.11), (5.12) and (5.13), we obtain

$$
\begin{aligned}
& \left(\frac{(1-a)\left(1+\frac{1}{b}\right)}{1+b}+\frac{1}{a}\right) \int_{\Sigma} \varphi^{2}|\nabla \eta|^{2} e^{-f} d \mu \\
> & \left(\frac{1-a}{1+b} S_{0}(m)-\left(1+\frac{m(1-a)}{2(1+b)}\right)\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}}\right)\left(\int_{\Sigma}\left(\varphi \eta e^{-\frac{f}{2}}\right)^{\frac{2 m}{m-2}} d \mu\right)^{\frac{m-2}{m}} .
\end{aligned}
$$

Next, a and b are chosen to be sufficiently small such that

$$
\left(\frac{1-a}{1+b} S_{0}(m)-\left(1+\frac{m(1-a)}{2(1+b)}\right)\left(\int_{\Sigma}|B|^{m} d \mu\right)^{\frac{2}{m}}\right) \geq \epsilon>0 .
$$

As $R \rightarrow \infty$, we obtain $\varphi \equiv 0$, that is, $|\nabla u| \equiv 0$. This implies that u is constant, thereby contradicting the assumption of the existence of a non-trivial bounded f-harmonic function that has finite total weighted energy. Thus, Σ has only one end.

References

[1] S. J. Altschuler and L. F. Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var. Partial Differential Equations 2 (1994), no. 1, 101-111. https://doi.org/10.1007/BF01234317
[2] H.-D. Cao, Y. Shen, and S. Zhu, The structure of stable minimal hypersurfaces in \mathbb{R}^{n+1}, Math. Res. Lett. 4 (1997), no. 5, 637-644. https://doi.org/10.4310/MRL.1997.v4.n5. a2
[3] J. Clutterbuck, O. C. Schnürer, and F. Schulze, Stability of translating solutions to mean curvature flow, Calc. Var. Partial Differential Equations 29 (2007), no. 3, 281293. https://doi.org/10.1007/s00526-006-0033-1
[4] D. Hoffman, T. Ilmanen, F. Martín, and B. White, Graphical translators for mean curvature flow, Calc. Var. Partial Differential Equations 58 (2019), no. 4, Paper No. 117, 29 pp. https://doi.org/10.1007/s00526-019-1560-x
[5] D. Impera and M. Rimoldi, Rigidity results and topology at infinity of translating solitons of the mean curvature flow, Commun. Contemp. Math. 19 (2017), no. 6, 1750002, 21 pp. https://doi.org/10.1142/S021919971750002X
[6] D. Impera and M. Rimoldi, Quantitative index bounds for translators via topology, Math. Z. 292 (2019), no. 1-2, 513-527. https://doi.org/10.1007/s00209-019-02276-y
[7] D. Kim and J. Pyo, Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow, Discrete Contin. Dyn. Syst. 38 (2018), no. 11, 5897-5919. https://doi.org/10.3934/dcds. 2018256
[8] D. Kim and J. Pyo, Half-space type theorem for translating solitons of the mean curvature flow in Euclidean space, Proc. Amer. Math. Soc. Ser. B 8 (2021), 1-10. https://doi.org/10.1090/bproc/67
[9] K. Kunikawa, Bernstein-type theorem of translating solitons in arbitrary codimension with flat normal bundle, Calc. Var. Partial Differential Equations 54 (2015), no. 2, 1331-1344. https://doi.org/10.1007/s00526-015-0826-1
[10] K. Kunikawa, Translating solitons in arbitrary codimension, Asian J. Math. 21 (2017), no. 5, 855-872. https://doi.org/10.4310/AJM.2017.v21.n5.a4
[11] K. Kunikawa and S. Saito, Remarks on topology of stable translating solitons, Geom. Dedicata 202 (2019), 1-8. https://doi.org/10.1007/s10711-018-0399-1
[12] J. H. Michael and L. M. Simon, Sobolev and mean-value inequalities on generalized submanifolds of \mathbb{R}^{n}, Comm. Pure Appl. Math. 26 (1973), 361-379. https://doi.org/ 10.1002/cpa. 3160260305
[13] R. Miyaoka, L L^{2} harmonic 1-forms on a complete stable minimal hypersurface, in Geometry and global analysis (Sendai, 1993), 289-293, Tohoku Univ., Sendai, 1993.
[14] L. Ni, Gap theorems for minimal submanifolds in \mathbb{R}^{n+1}, Comm. Anal. Geom. 9 (2001), no. 3, 641-656. https://doi.org/10.4310/CAG.2001.v9.n3.a2
[15] B. Palmer, Stability of minimal hypersurfaces, Comment. Math. Helv. 66 (1991), no. 2, 185-188. https://doi.org/10.1007/BF02566644
[16] K. Seo, Minimal submanifolds with small total scalar curvature in Euclidean space, Kodai Math. J. 31 (2008), no. 1, 113-119. https://doi.org/10.2996/kmj/1206454555
[17] Y.-B. Shen and X.-H. Zhu, On stable complete minimal hypersurfaces in \mathbf{R}^{n+1}, Amer. J. Math. 120 (1998), no. 1, 103-116.
[18] J. Spruck, Remarks on the stability of minimal submanifolds of \mathbf{R}^{n}, Math. Z. 144 (1975), no. 2, 169-174. https://doi.org/10.1007/BF01190946
[19] Q. Wang, On minimal submanifolds in an Euclidean space, Math. Nachr. 261/262 (2003), 176-180. https://doi.org/10.1002/mana. 200310120
[20] Y. L. Xin, Translating solitons of the mean curvature flow, Calc. Var. Partial Differential Equations 54 (2015), no. 2, 1995-2016. https://doi.org/10.1007/s00526-015-0853-y

Eungmo Nam
Department of Mathematics
Pusan National University
Busan 46241, Korea
Email address: emnam@pusan.ac.kr
Juncheol Pyo
Department of Mathematics
Pusan National University
Busan 46241, Korea
AND
School of Mathematics
Korea Institute for Advanced Study
Seoul 02455, Korea
Email address: jcpyo@pusan.ac.kr

[^0]: Received January 18, 2022; Revised June 23, 2022; Accepted July 15, 2022.
 2020 Mathematics Subject Classification. Primary 53C42, 53A10, 53C44.
 Key words and phrases. Translating solitons, L^{m} norm of the second fundamental form, f-stable, f-harmonic forms of L_{f}^{2}, ends.

 The first author was supported in part by the National Research Foundation of Korea (NRF-2020R1A2C1A01005698) and the second author was supported in part by the National Research Foundation of Korea (NRF-2021R1A4A1032418).

