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STABILITY AND TOPOLOGY OF TRANSLATING SOLITONS

FOR THE MEAN CURVATURE FLOW WITH THE SMALL

Lm NORM OF THE SECOND FUNDAMENTAL FORM

Eungmo Nam and Juncheol Pyo

Abstract. In this paper, we show that a complete translating soliton
Σm in Rn for the mean curvature flow is stable with respect to weighted

volume functional if Σ satisfies that the Lm norm of the second funda-

mental form is smaller than an explicit constant that depends only on the
dimension of Σ and the Sobolev constant provided in Michael and Simon

[12]. Under the same assumption, we also prove that under this upper
bound, there is no non-trivial f -harmonic 1-form of L2

f on Σ. With the

additional assumption that Σ is contained in an upper half-space with
respect to the translating direction then it has only one end.

1. Introduction

An orientable m-dimensional surface Σm in Rn is called a translating soliton
(or translator) for the mean curvature flow (MCF) if it satisfies

H = V ⊥,(1.1)

where H is the mean curvature vector of Σ ⊂ Rn, V is a constant unit vector
field in Rn, and (·)⊥ denotes the projection onto the normal bundle of Σ.
Translators arise as blow-up models at type II singularities of the MCF. A
translator is a special solution of the MCF moving in the direction of V without
deforming its shape under the flow. Moreover, it is a minimal submanifold
in a conformally flat Riemannian manifold (Rn, e 2

m 〈V,X〉〈, 〉), where 〈, 〉 is the
standard Euclidean metric on Rn and X is the position vector. More precisely,
a translator is a critical point of the following weighted volume functional:

Volf (Σ) =

∫
Σ

e−fdµ,(1.2)
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where f = −〈V,X〉, and dµ is the induced volume form on Σ ⊂ Rn. A trans-
lator is said to be f -stable if the second derivative of the weighted volume
functional is always non-negative for any normal variation with compact sup-
port. Without weight, that is, when f = 0, a critical point of the usual volume
functional is a minimal submanifold.

Let ∇̄ and ∇ be the standard connection on Rn and the induced Levi-
Civita connection on Σ, respectively. The tangent and normal bundle of Σ are
denoted by TΣ and NΣ, respectively, and (·)> and (·)⊥ denote the projection
of a vector field in Rn along the immersion onto TΣ and NΣ, respectively.
Then, the second fundamental form of an immersion B : TΣ × TΣ → NΣ is
defined by B(Y, Z) = (∇̄Y Z)⊥, where Y and Z are tangent vector fields on Σ.
Choose a local orthonormal frame field {ei, eα} of Σ, where {ei : 1 ≤ i ≤ m} is
tangent to Σ and {eα : m+ 1 ≤ α ≤ n} is normal to Σ. The mean curvature
vector is given by the trace of the second fundamental form; H = Trace(B) =∑m
i=1B(ei, ei) ∈ Γ(NΣ). And the squared norm of the second fundamental

form is defined by |B|2 =
∑
α

∑
i,j〈B(ei, ej), eα〉2.

For a submanifold Σm ⊂ Rn, the Lm norm of the second fundamental form,∫
Σ
|B|mdµ has been intensively studied. For a minimal submanifold Σ, it is

equivalent to the total scalar curvature. Using an estimate on the Lm norm
of the second fundamental form of Σ, it is possible to determine some prop-
erties of Σ, such as stability, topological properties, and shape. Among many
significant results, Spruck [18] proved that Σm≥3 is stable if the Lm norm of
the second fundamental form of Σ is less than a constant that depends only on
the dimension of Σ. Furthermore, Wang [19] proved that a stable minimal sub-
manifold Σm≥3 is an affine m-plane, if the second fundamental form satisfies
|B| ∈ Lm(Σ) (for the hypersurface case proved by Shen and Zhu [17]). With
the similar assumption as [18], Ni [14] and Seo [16] deduced the topology of Σ
(more precisely, the number of ends). In other directions, Palmer [15], Miyaoka
[13] and Seo [16] studied the L2 harmonic forms.

In this study, we further evaluate translators with the small Lm norm of the
second fundamental form and determine three properties that hold even for
translators of higher codimension. For the stability of translators, in Section
3, we first prove that:

Let Σm≥3 be a complete translator immersed in Rn. If Σ satisfies (
∫

Σ
|B|mdµ)

1
m

≤ C(m), then Σ is an f -stable translator. In fact, it is super f -stable.

In Section 4, based on the L2 harmonic form theory developed by Palmer
[15], Miyaoka [13] and Seo [16], we second prove that:

Let Σm≥3 be a complete translator immersed in Rn. If (
∫

Σ
|B|mdµ)

1
m < C(m),

then Σ admits no non-trivial f -harmonic 1-form of L2
f .

Since the height function in the given V direction has no local maximum,
there is no compact translator. Thus, one significant topological property is the
number of ends, i.e., the connected components outside of a compact geodesic
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ball, which is sufficiently large. For the topological ends of translators, in
Section 5, we finally prove that:

Let Σm≥3 be a complete translator immersed in Rn with being contained in the
half-space ΠV,a = {p ∈ Rn : 〈p, V 〉 ≥ a} for some a ∈ R. If (

∫
Σ
|B|mdµ)

1
m <

C(m), then Σ has only one end.

There are many interesting results in translators analogous to minimal sub-
manifolds. For the Bernstein-type theorem, Impera and Rimoldi [5] showed
that if an f -stable translator Σm in Rm+1 satisfies |B| ∈ L2

f (Σ), then Σ is
a translator hyperplane parallel to the direction of translator, V . In previ-
ous works on higher codimensional translators, Xin [20] proved that an m-

dimensional translator Σm in Rn satisfying both (
∫

Σ
|B|mdµ)

1
m ≤ C̃(m) and

|B| ∈ Lmf (Σ) is an affine m-plane parallel to V . Since the condition |B| ∈
Lmf (Σ) is too restrictive for the quantity |B|, the larger the height of Σ in the
direction of V , it is important to note that, in the main theorems, we only as-
sume the condition for the Lm norm of the second fundamental form of a given
translator, which is smaller than an explicit constant. In other directions, Ku-
nikawa [9, 10] showed rigidity results under natural geometric conditions, such
as a flat normal bundle or parallel principal normal.

2. Preliminaries

From the first variation formula of the weighted volume functional (1.2), we
obtain

d

dt
Volf (Σ)|t=0 =

∫
Σ

〈V −H,E〉e−fdµ,

where E = ϕν is a normal variational vector field with compact support on
Σ. More precisely, ν is a unit normal vector field of Σ in Rn and ϕ is any
compactly supported smooth function on Σ.

From the second variation formula of the weighted volume functional, we
obtain (see [20])

d2

dt2
Volf (Σ)|t=0 =

∫
Σ

|∇⊥E|2 −∑
i,j

〈B(ei, ej), E〉2
 e−fdµ,

where ∇⊥ is the normal connection on Σ. If d2

dt2 Volf (Σ)|t=0 ≥ 0 for any normal
variation, then Σ is called f -stable.

A direct computation gives the following (see [18], [20] for more details)∫
Σ

|∇⊥E|2 −∑
i,j

〈B(ei, ej), E〉2
 e−fdµ ≥

∫
Σ

(
|∇ϕ|2 − |B|2ϕ2

)
e−fdµ.

Following Wang [19], we denote that if
∫

Σ

(
|∇ϕ|2 − |B|2ϕ2

)
e−fdµ ≥ 0, then

Σ is called super f -stable. It is clear that if Σ is super f -stable, then it is
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f -stable. The super f -stability coincides with the f -stability when Σ is a
hypersurface.

Next, we recall the Sobolev inequality. In [12], Michael and Simon obtained
the general Sobolev inequality for the C2 submanifold Σm in Rn:(∫

Σ

h
m

m−1 dµ

)m−1
m

≤ S(m)

∫
Σ

(|∇h|+ h|H|)dµ,

where 0 ≤ ∀h ∈ C1
0 (Σ), S(m) is the Sobolev constant, and H is the mean cur-

vature vector of Σ in Rn. By substituting h = u
2(m−1)
m−2 and then using Hölder

inequality and Young inequality, one can obtain the following L2 Sobolev in-
equality (for example, see [20]):

S0(m)

(∫
Σ

u
2m

m−2 dµ

)m−2
m

≤
∫

Σ

|∇u|2dµ+
1

2

∫
Σ

|H|2u2dµ,(2.1)

where 0 ≤ u ∈ C1
0 (Σ) and S0(m) = (m−2)2

(6m2−14m+8)S(m)2 .

Given a complete translator Σ ⊂ Rn, an end of Σ is a connected component
of Σ\Bp(R), where Bp(R) ⊂ Σ is the geodesic ball centered at p ∈ Σ with a
sufficiently large R > 0 as radius. Using the weighted L1 Sobolev inequality
on translators, we obtain:

Lemma 1. Every end of a complete translator contained in the upper half-space
ΠV,a = {p ∈ Rn : 〈p, V 〉 ≥ a, a ∈ R} is non-f -parabolic.

Here, the condition of being in the upper half-space needs to apply the
weighted L1 Sobolev inequality on translators. See [5], [6] for more details.

The rotationally symmetric translators, translating bowl, and winglike trans-
lators [1,3,7], grim-reaper cylinders, and ∆-wings [4] are contained in the upper
half-space ΠV,a. Kim and the second author [8] show that a half-space type
theorem for translators.

Recall that the Bakry-Émery Ricci tensor of Σ is defined by

Ricf (Y, Y ) = Ric(Y, Y ) + Hess(f)(Y, Y ),

where Y is a tangent vector field on Σ, Ric stands for the Ricci curvature of Σ
and Hess(f) stands for the hessian of f on Σ. Using the Gauss equation, we
obtain (see [5] for more details),

Ricf (Y, Y ) ≥ −|B|2|Y |2.(2.2)

This gives a useful Bochner-type formula:

Lemma 2. Let u be an f -harmonic function on Σ. Then

1

2
∆f (|∇u|2) ≥ |Hess u|2 − |B|2|∇u|2,

where ∆f (·) = ∆(·)− 〈∇f,∇(·)〉 is the weighted Laplacian on Σ.
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This is derived from applying (2.2) to the weighted version of Bochner for-
mula,

1

2
∆f (|∇u|2) = |Hess u|2 + Ricf (∇u,∇u) + 〈∇∆fu,∇u〉,

and using the fact that u is f -harmonic.
Finally, we study the f -harmonic 1-form of L2

f . Let ω be a smooth 1-form

on Σ. Recall that ω is called an f -harmonic 1-form of L2
f on Σ if∫

Σ

|ξ|2e−fdµ <∞ and ∆fω = 0,

where ξ is the dual vector field of ω on Σ, and ∆f (·) stands for the weighted
Laplacian acting on the space of smooth 1-forms on Σ. In the particular case
that Σ is a hypersurface contained in the upper half-space in the translating
direction, if Σ has no non-trivial f -harmonic 1-form of L2

f , then Σ admits no
codimension one cycle which does not disconnect Σ. For more details about
the f -harmonic form of L2

f theory and codimension one cycle, see [11] and the
references therein.

3. Stability of translators

Theorem 3. Let Σm≥3 be a complete translator immersed in Rn. If Σ satisfies
(
∫

Σ
|B|mdµ)

1
m ≤ C(m), then Σ is an f -stable translator. In fact, it is super

f -stable. Here, C(m) =
√

2(m−2)

S(m)
√

(6m2−14m+8)(m+2)
.

Proof. We prove by contradiction. If we suppose that Σ is not super f -stable,
then for a suitable ϕ ∈ C∞0 (Σ),∫

Σ

|∇ϕ|2e−fdµ <
∫

Σ

|B|2ϕ2e−fdµ,(3.1)

where f = −〈X,V 〉. By Hölder inequality, the RHS becomes∫
Σ

|B|2ϕ2e−fdµ ≤
(∫

Σ

|B|mdµ
) 2

m
(∫

Σ

(ϕ2e−f )
m

m−2 dµ

)m−2
m

.(3.2)

On the other hand, let ψ = ϕe−
f
2 , then

|∇ψ|2 = |∇ϕ|2e−f +
1

4
|∇f |2ϕ2e−f − 〈∇ϕ,∇f〉ϕe−f .

We claim that ∫
Σ

1

4
|∇f |2ϕ2e−fdµ−

∫
Σ

〈∇ϕ,∇f〉ϕe−fdµ < 0,(3.3)

that is, ∫
Σ

|∇ψ|2dµ <
∫

Σ

|∇ϕ|2e−fdµ.(3.4)
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Because ϕ is compactly supported in Σ, by applying the divergence theorem
on
∫

Σ
div(ϕ2∇fe−f )dµ, we obtain∫

Σ

(〈∇(ϕ2),∇f〉+ ϕ2∆f − ϕ2|∇f |2)e−fdµ = 0.(3.5)

To analyze this equation, we consider the following identity from (1.1):

∆f = div(−V >) = div(V ⊥) = −〈H,V ⊥〉 = −|V ⊥|2.(3.6)

Applying (3.5) and (3.6) to the LHS of (3.3), we have∫
Σ

1

4
|∇f |2ϕ2e−fdµ−

∫
Σ

〈∇ϕ,∇f〉ϕe−fdµ

= − 1

4

∫
Σ

|∇f |2ϕ2e−fdµ− 1

2

∫
Σ

ϕ2|V ⊥|2e−fdµ < 0.

Thus, we obtain (3.4). Combining this result with (3.1) and (3.2), we obtain∫
Σ

|∇ψ|2dµ <
(∫

Σ

|B|mdµ
) 2

m
(∫

Σ

ψ
2m

m−2 dµ

)m−2
m

.

Applying the previous Sobolev inequality (2.1) to ψ,

S0(m)

(∫
Σ

ψ
2m

m−2 dµ

)m−2
m

≤
∫

Σ

|∇ψ|2dµ+
1

2

∫
Σ

|H|2ψ2dµ.

For the last term, by Hölder inequality,

1

2

∫
Σ

|H|2ψ2dµ ≤ 1

2

(∫
Σ

|H|mdµ
) 2

m
(∫

Σ

ψ
2m

m−2 dµ

)m−2
m

.

Thus, we obtain

S0(m)

(∫
Σ

ψ
2m

m−2 dµ

)m−2
m

<

((∫
Σ

|B|mdµ
) 2

m

+
1

2

(∫
Σ

|H|mdµ
) 2

m

)(∫
Σ

ψ
2m

m−2 dµ

)m−2
m

.

Cauchy-Schwarz inequality gives(∫
Σ

|H|mdµ
) 2

m

≤ m
(∫

Σ

|B|mdµ
) 2

m

.

Applying this to the preceding inequality and canceling
(∫

Σ
ψ

2m
m−2 dµ

)m−2
m

on

both sides, we obtain

S0(m) <
(

1 +
m

2

)(∫
Σ

|B|mdµ
) 2

m

.
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Let C(m) =
√

2S0(m)
m+2 . Thus, C(m) <

(∫
Σ
|B|mdµ

) 1
m . This contradicts to the

prior assumption. Thus, the proof is complete. �

4. f-harmonic 1-forms of L2
f on translators

Theorem 4. Let Σm≥3 be a complete translator immersed in Rn. If(∫
Σ

|B|mdµ
) 1

m

< C(m),

then Σ admits no non-trivial f -harmonic 1-form of L2
f .

Proof. Let ω be an f -harmonic 1-form of L2
f on Σ, and ξ be the dual vector

field of ω on Σ. From the weighted version of the Bochner formula and (2.2),
we obtain

1

2
∆f (|ξ|2) ≥ |∇ξ|2 − |B|2|ξ|2.(4.1)

By a direct computation for the LHS,

1

2
∆f (|ξ|2) ≥ 1

2
(∆(|ξ|2)− 〈∇f,∇|ξ|2〉)

= |∇|ξ||2 + |ξ|∆|ξ| − |ξ|〈∇f,∇|ξ|〉.
Based on (4.1),

|ξ|∆|ξ|+ |B|2|ξ|2 = |∇ξ|2 + |ξ|〈∇f,∇|ξ|〉 − |∇|ξ||2 ≥ |ξ|〈∇f,∇|ξ|〉.
Here, we use the Kato inequality, that is,

|∇ξ|2 − |∇|ξ||2 ≥ 0.

Let ϕ = |ξ|. Then, we can rewrite

ϕ∆ϕ+ |B|2ϕ2 ≥ ϕ〈∇f,∇ϕ〉.(4.2)

For a fixed point p ∈ Σ and R > 0, we choose a suitable cut-off function η that
satisfies

η =

{
1 on Bp(R)
0 on Σ\Bp(2R)

and |∇η| ≤ 1

R
on Bp(2R)\Bp(R),

where Bp(R) ⊂ Σ is the geodesic ball. Multiplying both sides by η2e−f on
(4.2) and integrating over Σ,∫

Σ

η2ϕ∆ϕe−fdµ+ η2|B|2ϕ2e−fdµ ≥
∫

Σ

η2ϕ〈∇f,∇ϕ〉e−fdµ.(4.3)

Because η is compactly supported on Σ, applying the divergence theorem on∫
Σ

div(η2ϕ∇ϕe−f )dµ, we obtain∫
Σ

η2ϕ∆ϕe−fdµ =

∫
Σ

η2ϕ〈∇ϕ,∇f〉e−fdµ−
∫

Σ

2ηϕ〈∇η,∇ϕ〉e−fdµ

−
∫

Σ

η2|∇ϕ|2e−fdµ.
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Using (4.3),∫
Σ

η2|B|2ϕ2e−fdµ ≥
∫

Σ

η2|∇ϕ|2e−fdµ+

∫
Σ

2ηϕ〈∇η,∇ϕ〉e−fdµ.

By the Schwarz inequality, for any a > 0, we obtain∫
Σ

η2|B|2ϕ2e−fdµ ≥ (1− a)

∫
Σ

η2|∇ϕ|2e−fdµ− 1

a

∫
Σ

ϕ2|∇η|2e−fdµ.(4.4)

Because ϕη is compactly supported in Σ, we can apply (3.4) to ϕη,∫
Σ

|∇(ϕη)|2e−fdµ >
∫

Σ

|∇(ϕηe−
f
2 )|2dµ.(4.5)

Applying the previous Sobolev inequality (2.1) to ϕηe−
f
2 ,

(4.6)

∫
Σ

|∇(ϕηe−
f
2 )|2dµ

≥ S0(m)

(∫
Σ

(ϕηe−
f
2 )

2m
m−2 dµ

)m−2
m

− 1

2

∫
Σ

|H|2(ϕηe−
f
2 )2dµ.

By a direct computation,∫
Σ

|∇(ϕη)|2e−fdµ =

∫
Σ

(|∇ϕ|2η2 + 2ϕη〈∇ϕ,∇η〉+ ϕ2|∇η|2)e−fdµ.(4.7)

By the Schwarz inequality, for any b > 0, we obtain∫
Σ

(|∇ϕ|2η2 + 2ϕη〈∇ϕ,∇η〉+ ϕ2|∇η|2)e−fdµ

≤ (1 + b)

∫
Σ

|∇ϕ|2η2e−fdµ+ (1 +
1

b
)

∫
Σ

|∇η|2ϕ2e−fdµ.

(4.8)

Combining (4.5), (4.6), (4.7), and (4.8),

(1 + b)

∫
Σ

|∇ϕ|2η2e−fdµ

>

∫
Σ

|∇(ϕηe−
f
2 )|2dµ− (1 +

1

b
)

∫
Σ

|∇η|2ϕ2e−fdµ

≥ S0(m)

(∫
Σ

(ϕηe−
f
2 )

2m
m−2 dµ

)m−2
m

− 1

2

∫
Σ

|H|2(ϕηe−
f
2 )2dµ

− (1 +
1

b
)

∫
Σ

|∇η|2ϕ2e−fdµ.

(4.9)

For the LHS in (4.4), by Hölder inequality,(∫
Σ

|B|mdµ
) 2

m
(∫

Σ

(ϕηe−
f
2 )

2m
m−2 dµ

)m−2
m

≥
∫

Σ

η2|B|2ϕ2e−fdµ.(4.10)
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Combining (4.4) and (4.9), and (4.10), we obtain(∫
Σ

|B|mdµ
) 2

m
(∫

Σ

(ϕηe−
f
2 )

2m
m−2 dµ

)m−2
m

> − 1

a

∫
Σ

ϕ2|∇η|2e−fdµ

+
1− a
1 + b

(
S0(m)

(∫
Σ

(ϕηe−
f
2 )

2m
m−2

)m−2
m

− 1

2

∫
Σ

|H|2(ϕηe−
f
2 )2

−(1 +
1

b
)

∫
Σ

|∇η|2ϕ2e−f
)
.

We can rewrite(
(1− a)(1 + 1

b )

1 + b
+

1

a

)∫
Σ

ϕ2|∇η|2e−fdµ

>

(
1− a
1 + b

S0(m)−
(∫

Σ

|B|mdµ
) 2

m

)(∫
Σ

(ϕηe−
f
2 )

2m
m−2 dµ

)m−2
m

− 1− a
2(1 + b)

∫
Σ

|H|2(ϕηe−
f
2 )2dµ.

(4.11)

By Hölder inequality,∫
Σ

|H|2(ϕηe−
f
2 )2dµ ≤

(∫
Σ

|H|mdµ
) 2

m
(∫

Σ

(ϕηe−
f
2 )

2m
m−2 dµ

)m−2
m

.(4.12)

Cauchy-Schwarz inequality gives(∫
Σ

|H|mdµ
) 2

m

≤ m
(∫

Σ

|B|mdµ
) 2

m

.(4.13)

Combining (4.11), (4.12) and (4.13), we obtain(
(1− a)(1 + 1

b )

1 + b
+

1

a

)∫
Σ

ϕ2|∇η|2e−fdµ

>

(
1− a
1 + b

S0(m)−
(

1+
m(1− a)

2(1 + b)

)(∫
Σ

|B|mdµ
) 2

m

)(∫
Σ

(ϕηe−
f
2 )

2m
m−2 dµ

)m−2
m

.

Next, a and b are chosen to be sufficiently small such that(
1− a
1 + b

S0(m)−
(

1 +
m(1− a)

2(1 + b)

)(∫
Σ

|B|mdµ
) 2

m

)
≥ ε > 0.

As R → ∞, we obtain ϕ ≡ 0, that is, ξ ≡ 0. Since ξ is arbitrary, Σ has no
non-trivial f -harmonic 1-form of L2

f . �
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5. Topology of translators

Theorem 5. Let Σm≥3 be a complete translator immersed in Rn with being
contained in the upper half-space ΠV,a = {p ∈ Rn : 〈p, V 〉 ≥ a} for some a. If

(
∫

Σ
|B|mdµ)

1
m < C(m), then Σ has only one end.

Proof. We reason by contradiction. Suppose that Σ has at least two ends.
Because every end of Σ contained in ΠV,a is non-f -parabolic, there exists a non-
constant bounded f -harmonic function that has finite total weighted energy.
See [2], [5] and [6] for details.

Let u be such an f -harmonic function. Then, we obtain

1

2
∆f (|∇u|2) ≥ |Hess u|2 − |B|2|∇u|2.(5.1)

By a direct computation for the LHS,

1

2
∆f (|∇u|2) =

1

2
(∆(|∇u|2)− 〈∇f,∇|∇u|2〉)

= |∇|∇u||2 + |∇u|∆|∇u| − |∇u|〈∇f,∇|∇u|〉.

Based on (5.1),

|∇u|∆|∇u|+ |B|2|∇u|2 ≥ |Hess u|2 + |∇u|〈∇f,∇|∇u|〉 − |∇|∇u||2

≥ |∇u|〈∇f,∇|∇u|〉.

Here, we use the Kato inequality, that is,

|Hess u|2 − |∇|∇u||2 ≥ 0.

Let ϕ = |∇u|. Then, we can rewrite

ϕ∆ϕ+ |B|2ϕ2 ≥ ϕ〈∇f,∇ϕ〉.(5.2)

For a fixed point p ∈ Σ and R > 0, we choose a suitable cut-off function η that
satisfies

η =

{
1 on Bp(R)
0 on Σ\Bp(2R)

and |∇η| ≤ 1

R
on Bp(2R)\Bp(R),

where Bp(R) ⊂ Σ is the geodesic ball of centered at p with radius R. Multi-
plying both sides by η2e−f on (5.2) and integrating over Σ,∫

Σ

η2ϕ∆ϕe−fdµ+ η2|B|2ϕ2e−fdµ ≥
∫

Σ

η2ϕ〈∇f,∇ϕ〉e−fdµ.(5.3)

Because η is compactly supported on Σ, applying the divergence theorem on∫
Σ

div(η2ϕ∇ϕe−f )dµ, we obtain∫
Σ

η2ϕ∆ϕe−fdµ =

∫
Σ

η2ϕ〈∇ϕ,∇f〉e−fdµ−
∫

Σ

2ηϕ〈∇η,∇ϕ〉e−fdµ

−
∫

Σ

η2|∇ϕ|2e−fdµ.
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Using (5.3),∫
Σ

η2|B|2ϕ2e−fdµ ≥
∫

Σ

η2|∇ϕ|2e−fdµ+

∫
Σ

2ηϕ〈∇η,∇ϕ〉e−fdµ.

By the Schwarz inequality, for any a > 0, we obtain∫
Σ

η2|B|2ϕ2e−fdµ ≥ (1− a)

∫
Σ

η2|∇ϕ|2e−fdµ− 1

a

∫
Σ

ϕ2|∇η|2e−fdµ.(5.4)

Because ϕη is compactly supported in Σ, we can apply (3.4) to ϕη,∫
Σ

|∇(ϕη)|2e−fdµ >
∫

Σ

|∇(ϕηe−
f
2 )|2dµ.(5.5)

Applying the previous Sobolev inequality (2.1) to ϕηe−
f
2 ,∫

Σ

|∇(ϕηe−
f
2 )|2dµ

≥ S0(m)

(∫
Σ

(ϕηe−
f
2 )

2m
m−2 dµ

)m−2
m

− 1

2

∫
Σ

|H|2(ϕηe−
f
2 )2dµ.

(5.6)

By a direct computation,∫
Σ

|∇(ϕη)|2e−fdµ =

∫
Σ

(|∇ϕ|2η2 + 2ϕη〈∇ϕ,∇η〉+ ϕ2|∇η|2)e−fdµ.(5.7)

By the Schwarz inequality, for any b > 0, we obtain∫
Σ

(|∇ϕ|2η2 + 2ϕη〈∇ϕ,∇η〉+ ϕ2|∇η|2)e−fdµ

≤ (1 + b)

∫
Σ

|∇ϕ|2η2e−fdµ+ (1 +
1

b
)

∫
Σ

|∇η|2ϕ2e−fdµ.

(5.8)

Combining (5.5), (5.6), (5.7), and (5.8),

(1 + b)

∫
Σ

|∇ϕ|2η2e−fdµ

>

∫
Σ

|∇(ϕηe−
f
2 )|2dµ− (1 +

1

b
)

∫
Σ

|∇η|2ϕ2e−fdµ

≥ S0(m)

(∫
Σ

(ϕηe−
f
2 )

2m
m−2 dµ

)m−2
m

− 1

2

∫
Σ

|H|2(ϕηe−
f
2 )2dµ

− (1 +
1

b
)

∫
Σ

|∇η|2ϕ2e−fdµ.

(5.9)

For the LHS in (5.4), by Hölder inequality,(∫
Σ

|B|mdµ
) 2

m
(∫

Σ

(ϕηe−
f
2 )

2m
m−2 dµ

)m−2
m

≥
∫

Σ

η2|B|2ϕ2e−fdµ.(5.10)
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Combining (5.4), (5.9), and (5.10), we obtain(∫
Σ

|B|mdµ
) 2

m
(∫

Σ

(ϕηe−
f
2 )

2m
m−2 dµ

)m−2
m

> − 1

a

∫
Σ

ϕ2|∇η|2e−fdµ

+
1− a
1 + b

(
S0(m)

(∫
Σ

(ϕηe−
f
2 )

2m
m−2

)m−2
m

− 1

2

∫
Σ

|H|2(ϕηe−
f
2 )2

−(1 +
1

b
)

∫
Σ

|∇η|2ϕ2e−f
)
.

We can rewrite(
(1− a)(1 + 1

b )

1 + b
+

1

a

)∫
Σ

ϕ2|∇η|2e−fdµ

>

(
1− a
1 + b

S0(m)−
(∫

Σ

|B|mdµ
) 2

m

)(∫
Σ

(ϕηe−
f
2 )

2m
m−2 dµ

)m−2
m

− 1− a
2(1 + b)

∫
Σ

|H|2(ϕηe−
f
2 )2dµ.

(5.11)

By Hölder inequality,∫
Σ

|H|2(ϕηe−
f
2 )2dµ ≤

(∫
Σ

|H|mdµ
) 2

m
(∫

Σ

(ϕηe−
f
2 )

2m
m−2 dµ

)m−2
m

.(5.12)

Cauchy-Schwarz inequality gives(∫
Σ

|H|mdµ
) 2

m

≤ m
(∫

Σ

|B|mdµ
) 2

m

.(5.13)

Combining (5.11), (5.12) and (5.13), we obtain(
(1− a)(1 + 1

b )

1 + b
+

1

a

)∫
Σ

ϕ2|∇η|2e−fdµ

>

(
1− a
1 + b

S0(m)−
(

1+
m(1− a)

2(1 + b)

)(∫
Σ

|B|mdµ
) 2

m

)(∫
Σ

(ϕηe−
f
2 )

2m
m−2 dµ

)m−2
m

.

Next, a and b are chosen to be sufficiently small such that(
1− a
1 + b

S0(m)−
(

1 +
m(1− a)

2(1 + b)

)(∫
Σ

|B|mdµ
) 2

m

)
≥ ε > 0.

As R→∞, we obtain ϕ ≡ 0, that is, |∇u| ≡ 0. This implies that u is constant,
thereby contradicting the assumption of the existence of a non-trivial bounded
f -harmonic function that has finite total weighted energy. Thus, Σ has only
one end. �
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