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SOBOLEV-TYPE EMBEDDING THEOREMS FOR
HARMONIC AND HOLOMORPHIC SOBOLEV SPACES

HonGg RAE CHO AND ERN GUuN KwoON

ABSTRACT. In this paper we consider Sobolev-type embedding the-
orems for harmonic and holomorphic Sobolev spaces on a bounded
domain with C? boundary.

1. Introduction and statement of results

Let D be a bounded domain in R with C? boundary. For 2 € D
let dp(x) denote the distance from x to dD. For 0 < p,q < oo let
|h||p,q be the LP-norms with respect the weighted measures dV,(z) =
5p(x)?1dV(x). For a function h we define a functional || - |lm+o,p.q:
where m is a non-negative integer, 0 < p,q¢ < o0, and 0 < ¢ < 1, as
follows:

m 1/p
1~llmp.q = Z/ N if =0,
j=0"P

1/p
| Blimtopq == {nhnfn,pﬁ /D |vm+1h|z’5§§—">”dn} .

We define harmonic Sobolev spaces H™tP4(D) by

H™P9(D) = {h harmonic on D : ||h||m+o.pq < 0}
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THEOREM 1.1. Let D be a bounded domain in RN with C? boundary.
Let 1 <p<o0,¢; > 0,8 > 1(i =1,2) with ¢ — qo = (s1 — S9)p.- Then
we have

'HSO,IMIO (D) = H5P9 (D)

Let D be a bounded domain in C" with C? boundary. Let m be
a non-negative integer, 0 < p, ¢ < o0, and 0 < ¢ < 1. We define
holomorphic Sobolev spaces A™7P4(D) by

A™9P4(D) = {f holomorphic on D : || f|lm+opq < 00}

THEOREM 1.2. Let 0 < pp < p1 < 00,¢; > 0,8; > 0(z = 0,1) with
(n+aq1)/p — (n+ qo)/po = s1 — so. Then we have

AS[)’POy‘IU (D) C AsLP1.q1 (D)

REMARK 1.3. (i) According to Theorem 1.1, a derivative is compen-
sated for by a factor dp, so that the norms || - ||s,,p,q and || - l|s;,p,q, are
equivalent if q; — ¢gg equals the difference in the number of derivatives,
which is (s1 — so)p. Beatrous [2] proved this result for the holomorphic
Sobolev spaces on a strongly pseudoconvex domain.

(ii) In Theorem 1.2, if s; = 0 and g9 = q; = 1, then we have

W*o(D) N O(D) C [P (D)nOD), — =L _ %0
pr po n+tl
This is the Sobolev embedding theorem for holomorphic Sobolev spaces.
In this holomorphic Sobolev embedding theorem the dimension 2n is
replaced by n + 1; the complex tangent derivatives are counted for one
half.

(iii) Theorem 1.2 has been proved by Beatrous-Burbea [3] for the unit
ball and by Beatrous [2] for the strongly preudoconvex domain. The key
point is the reproducing kernel with right estimate matching quasimet-
ric on 0D. As usual we study the behavior of holomorphic functions in
terms of the basic invariant objects attached to the domain; the Bergman
kernel and its metric, the Szegd kernel, and the Poisson-Szegd kernel,
since all these would naturally be taken into account the simple geomet-
ric considerations. However in general domains much enough is known
about these domain functions and so we must use a different approach.
For Sobolev norm estimates we replace the role of the reproducing kernel
by the mean value theorem and Hardy’s inequalities.

In Section 4 we observe that the assumption of C?-smoothness of the
boundary of D is an essential condition for the Sobolev-type embedding
of Theorem 1.2. We give a counter-example of a convex domain with
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C1* smooth boundary for 0 < A < 1 which does not satisfy our em-
bedding results. Here a C'*-function means that first derivatives of the
function are Lipschitz continuous of order A. The counter-example shows
that even a little loss of derivatives of the boundary is not permitted for

the sharp embedding results.

2. Harmonic Sobolev spaces

Throughout this section h will denote a harmonic function on D.

LEMMA 2.1. Let K € D. Let a € ZY and 1 << p < 00,0 < ¢ < 0o0.

Then we have
5111<p |D%h| < C|lhllp,q,

where the constant C is independent of h.

Proof. Let z € OK. Since h is harmonic, it follows that (see [6])

1 1/p
(21)  |D*W=)| S 3p (@) /Pt ( /B(z’aD(z)m |h(y)[? dV(y)> :

We have
(22)  6p(x)/2 <ép(y) <20p(z) for y € B(z,dp(z)/2).
By (2.2), the right-hand side of (2.1) is bounded by

dist(K, 3D)—N/p—la|—(q—1)/p“h||p’q.

By the maximum principle, we get the result.

O

LEMMA 2.2. Let s > 0,1 < p < 00,0 < ¢ < 00, and let k be a
non-negative integer such that (k —s)p+gq > 0. Then there is a positive

constant C, depending on s,p,q, and k, such that
/ [VEH PSSP ay, < © / IV*RPSS PV,
D D

Proof. We use a Whitney decomposition of D (see [1]). Let € > 0 be
sufficiently small. With e fixed, there exists a sequence {z;} in D, and

a positive integer M, where M depends only on D, such that
(2.3) B(zj,dp(x;)) are pairwise disjoint,
(24)  U; B(z;,0p(z;)/2) = D,

(2.5)  each point of D lies in at most M of the sets B(x;, dp(z;)).
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Let z € B(zj,0p(z;)/2). Then B(z,6p(z)/4) C B(zj,dp(z;)). Since
V¥ is harmonic, it follows that

3p(2)|VV*h(z) [V*h(y)laV (y).

| ~
5D(~T) B(z.5p(x)/4)
By Hoélder’s inequality, we have

1 / .
< VER(y)|PdV (y).
Sp(z)N B(x,sp(:c)/zx)’ @) )

Since 6p(z)/2 < dp(y) < 26p(x) for y € B(x,6p(x)/4), it follows from
(2.6) that

lvk+1 h($) Ipé([gc+1—s)p+q—l

1 / k k—s)
S —x V*h(y)Pop(y) PV, (y).
5D($)N B(an(I)/4)I ( )l ) q )

Thus it follows that

/ lvk—é—lh(x)lpé(Dk-%lfS)PdV&
B(z;,6p(z;)/2)

(26)  Op(@)P|VFH h(2)P <

27) </ IVER() P3p () * PV ()
(z,0p(z)/4)

< / YRR () oD (y) * P dV (y).
(% 0D (‘TJ ))

By (2.4) and (2.5), and (2.7), we have

/ Ivk+1h( )Ipd(k+1 S)PdV <Z/ ’Vk_HhIp(ng'l_s)pdV;]
B(z;,0p(x;)/2)
< Z / VERPsE=IP gy,
B(z;.0p(z;))

<M / \VERPSE— gy,
D
O

LEMMA 2.3. Let s,p,q, and k be the same as in Lemma 2.2. There
is a compact subset K of D such that

/ V*RPSS I av, </ [V RS SR 4V, + sup [V ¥R
D\K D\K K
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Proof. Since 8D is C?, there is a C' vector field v such that v(y)
is the outward unit normal vector at y € dD. For § > 0 we let Ds =
{y —tv(y) : y € dD,t > 6}. Then there exists a number dg > 0 such
that the map ®(y,t) = y — tv(y) is a C! diffeomorphism of 3D x (0, &)
onto D\ Ds,. Thus we have

do
[ sy [Tt st an
D\Ds, 0o Jop

Since

50d

iRy~ ) = = [ 2Vl = ro()dr + Ty - o)

do
- / VE Ry — 1)) - v(y)dr + VE( — bov(y)),
t
it follows that

[ vy,
D\Ds,

8o 8o p
f,/ / (/ IVFH R (y — Tu(y))|d7d> do (y)tk-sIP+a—1 gy
0 JoD

t
do
[ [ 9 - st
0 oD

By Hardy’s inequality, we have

S / rdo P ‘
/ / </ |VEHLp(y — Tz/(y))ld7> th=srra—lgrdo
aD JOo t

do
,S/ / |Vk+1h(y — Tl/(y))|”7‘p+(k_5)p+q_1d7'd0.
8D JO
Thus it follows that

[ el [ oRhre Ty,
D\D50 D _5()

+ 5§,k‘s)”+q sup |VEh|P.
aDs,

By the maximum principle, we get the result. O

Proof of Theorem 1.1. Let m; = [s;] and 0; = s; — m;. By sym-
metry, it is enough to prove the inequality ||A||s,p.q0 S llsipq for
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h € HP9%1(D). By Lemmas 2.1, 2.2, and 2.3, we have

1Bl p.q: ~ IR0

SiyPyqi »qi

First we assume that sg < s;. By Lemma 2.1 and Lemma 2.3, it follows
that

IhIE, < /D [V RPT PGy, 4 (I

Pgo ~ P
2.8 m -7
2. S [ IV PSPV, + i,

~ Hh”gl,p,ql'

By the similar method as (2.8), it follows that
(2.9) /D AR G A /D MR G AR L

By (2.8) and (2.9), we have
[Allsopi00 S NAllsipar  for so < s1.

Now we assume that s; < sg. By Lemma, 2.2, it follows that
[ 19 thpsl ey, < [ [omrihpel oy,
D D

Clearly, ||hlip.go S I1Pllp,gi- Thus it follows that

1Rlls0p.0 S 1Allsipgn for  s1 < so.

3. Holomorphic Sobolev spaces

THEOREM 3.1. Let 0 < p,q < oo, and s > 0. Let f € ASP9(D). Let
m be a non-negative integer with m > s. Then we have

(31)  sup{dp(z2)" APV f(2)]: 2 € DY S | flspa-

Proof. For py € D sufficiently near 8D, we translate and rotate the
coordinate system so that z(pg) = 0 and the Im z; axis is perpendicular
to 0D. Let B.(po) denote the non-isotropic ball

n

_)_laP |2/”
Belpo) = {(65D(100))2 i 22: o) 1}'
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Since 8D is C?, it follows that there is an ¢ > 0 such that for pg
sufficiently near 9D and z € Be,(po) we have z € D and

6p(po)
2

(see [1]). Since the plurisubharmonicity of |V™ f|P is invariant by the
affinity

(3.2) < dp(2) < 28p(po)

Z1 z9 Zn
(“‘717227---7211)‘_'> s sy T e |
€06D(Po) " /€00 (Po) v €adp(po)

it follows that

1
3.3 V™ f(po)P < V™ f(2)PAV (2).
( ) l f( 0)' VOI(BeO(pO)) Bso(pg)l ( )I ( )

By (3.2), the right-hand side of (3.3) is bounded by

1
5 (po) T m =7

(3.4) [ 1o s rav,

Thus we get the result of the case m = s.
Now if m > s, then by Lemma 2.2, the right-hand side of (3.3) is
bounded by
1
3 (po) oo

r /l)lv[s]+1f|p5g5]+l_5)pdvc1-

Thus we have

[V™ f(po)] < 8p(po)~™H =P £l o
d

By Hardy-Littlewood lemma and Theorem 3.1, we get the following
results.

COROLLARY 3.2. Let 0 < p,q < oo. Then we have
(i) As,p,q(D) - As—(n+q)/p(D)7 if s> (n + Q)/p-
(i) A%P9(D) C BMOA(D), if s=(n+gq)/p.

LEMMA 3.3. Let 0 < pp < p1 < 00,q; > 0( = 1,2) with (n +
q0)/po = (n+ q1)/p1. For s > 0 we have A>P>% (D) C ASP4(D) and
the inclusion is continuous.
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Proof. We will show that ||fllspi.a0 S I fllspoqe for f € AP0 (D).
Let s = [s] + 0. For 0 < j < [s] we have

/D lef|P1qu1 = /D ’ij|P0IVJf'Pl—pod%)—16([,;+qo)(m/po_l)dv
< </D |ij|P0qu()) (Sup5gl+qo)/100|vjf|)p1—p0'

By (3.5), it follows that

(3.5)

199 fllps < IV FIGELR (sup 8570093 gy oo/

P0,490

(3.6) < ] 6("-1-!10)/170 Vj
= ”V f”Po#m +supop ’ f!

By (3.1), the right-hand side of (3.6) is bounded by [|V7 f||py.q,- Thus it
follows that

3.7) 1 lstprar S 15l po.go-

Now it follows that
(3.8)
/D IV[S]Hprlég_a)plqul ’S/D IV[S]Hpr"(Sg_O)p“quO
o (sup (51D—a+(n+lIO)/PO|v[s]+1f’>p1_p0 .
By (3.1), it follows that
(3.9) sup 8, T OPIT I £ <l Fllspuan:
By (3.7), (3.8), and (3.9), we get the result. O
Proof of Theorem 1.2. By Lemma 3.3, we have
(3.10) ASoPoD (DY C A%PHI( D),

where (n+qo)/po = (n+¢q)/p1. Since g1 — g = (s1 — s0)p1, by Theorem
1.1, we have

(3.11) APLA(DY C ASLPLO(D).

By (3.10) and (3.11), we get the required result. O
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4. A counter-example

In this section we observe that the assumption of C%-smoothness of
the boundary of D is an essential condition for the sharp embedding of
Theorem 1.2.

EXAMPLE 4.1. We consider the domain defined by
D={(z1,22) € C¥: |z1)* + |z'*™ <1}, where 0< A< 1.

We can see that D is a bounded convex domain with C1* boundary, but
it has no C? boundary. In [4] we have compared the growth rate of the
functions in AP9(D) between this domain D and the bounded domain
with C? boundary.

Let 0 < pgp < p1 < 00,q; > 0,5, >0 =0,1) with (1 +q1)/p1 — (1 +
q0)/po = s1—so. Let f(z1, 22) be some branch of (1 —21)"%on D, where
1+qa+2/(1+N)/p1—s1 <d<(14+g+2/(1+X))/po—s0. We prove
that

° f c ASOvPOa‘IO(D)’
Y f¢ Aslyplaql(D)'

The two facts above imply that A%P0%(D) cannot be embedded into

AShPl»QI (D)_

Since D is a Lipschitz domain, we have
(4.1) 1-— |21|2 — |22|1+/\ ~ (5D(21,22) for (21,22) eD
(see Lemma 2 in [6], Section 3.2.1 of Chapter VI).

We have

1
11— 21|d+[s¢]+1'

Set 7(z1) = (1 — |z1|?)/(HN). By (4.1), it follows that

Vi f]

/DIV[S()]+1f|p05g—UO)POdV;m

dA(Zl)
lz1]<1 ll — le(d+[50]+1)1>0

8 / (1= |z [? — |zo|TH)Imo0Pot a0l A (2y).
|z2|<r(z1)

We estimate the integral

M= [ = fal a0 ),
{zol<r(z1)
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By the polar coordinates, we have

r(z1)
I(Zl) N/ (1 - |Z1|2 _ 7’1+)‘)(1_00)m+q0_17‘d7‘
0

1|z ?
N/ (1 — |z | — s)(1-o0)Pota0—1 2/ (14+1)—1 4,
0

~(1- |zl|2)2/(1+A)+(1—oo)po+qo—1

1
x/ ¢! _7—)(1—00)170+¢I0—17.2/(1+)\)~1d7,‘

0
Note that
1
2
/ (1 — 7)d-o0pota=1.2/(0+N) 14, — B (—-——1 (1 —a0)po + QO> ,
0 + A

where B(-,-) is the beta function. Hence we have

/DIV[SO]+1f|p068_GO)pOd‘/qo

— 2y2/(14+A)+(1—00)po+g0~1
NV/I - (1 |le ) dA(Zl)
21 |<

|1 — 2 |(d+so]+1)po

(1 — |21]?)?/ (M) +(1-00)po+qo-1

- rl—lgl* 1 ]<1 Il — Tzll(d+[50]+1)170 dA(Zl)dA(zl)
~ lim L <1

ro1- (1 — r2)(d+s0)po—go—1-2/(1+) ~

since (d+s0)po—go—1—2/(1+A) < 0 (see [5]). Hence f € A%0ro20(D).
By the similar calculation as above, we get

00,

4 g oo gy ! =
/D]V ! fl 151) qul Tl_lgl, (1 _,,.2)(d+51)p1—~q1—1—2/(1+)‘) o

since (d+s1)p1 — g1 — 1 —2/(1 + A) > 0. Hence f ¢ As1P1:41(D),
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