• Title/Summary/Keyword: hamiltonian paths

Search Result 18, Processing Time 0.024 seconds

Application of the Hamiltonian circuit Latin square to a Parallel Routing Algorithm on Generalized Recursive Circulant Networks

  • Choi, Dongmin;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1083-1090
    • /
    • 2015
  • A generalized recursive circulant network(GR) is widely used in the design and implementation of local area networks and parallel processing architectures. In this paper, we investigate the routing of a message on this network, that is a key to the performance of this network. We would like to transmit maximum number of packets from a source node to a destination node simultaneously along paths on this network, where the ith packet traverses along the ith path. In order for all packets to arrive at the destination node securely, the ith path must be node-disjoint from all other paths. For construction of these paths, employing the Hamiltonian Circuit Latin Square(HCLS), a special class of (n x n) matrices, we present O(n2) parallel routing algorithm on generalized recursive circulant networks.

Cryptographic Protocols using Semidirect Products of Finite Groups

  • Lanel, G.H.J.;Jinasena, T.M.K.K.;Welihinda, B.A.K.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.17-27
    • /
    • 2021
  • Non-abelian group based cryptosystems are a latest research inspiration, since they offer better security due to their non-abelian properties. In this paper, we propose a novel approach to non-abelian group based public-key cryptographic protocols using semidirect products of finite groups. An intractable problem of determining automorphisms and generating elements of a group is introduced as the underlying mathematical problem for the suggested protocols. Then, we show that the difficult problem of determining paths and cycles of Cayley graphs including Hamiltonian paths and cycles could be reduced to this intractable problem. The applicability of Hamiltonian paths, and in fact any random path in Cayley graphs in the above cryptographic schemes and an application of the same concept to two previous cryptographic protocols based on a Generalized Discrete Logarithm Problem is discussed. Moreover, an alternative method of improving the security is also presented.

An Efficient Path-Based Multicast Algorithm in Wormhole-Routed Net works (웜홀 방식의 네트워크에서 경로전송을 기반으로 하는 효율적인 다중전송 알고리즘)

  • 김시관
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.3
    • /
    • pp.20-28
    • /
    • 2001
  • In this paper, we present an efficient path-based multicast algorithm in wormhole-routed mesh networks. Our algorithm is based on a network partitioning strategy that uses two Hamiltonian paths. In the previous studies, only on a network partitioning strategy that uses two Hamiltonian paths. In the previous studies, only one Hamiltonian path was used. Thus messages traverse mire horizontal channels than vertical ones, leading to earlier network congestion. By incorporating additional vertical Hamiltonian path as well as the horizontal Hamiltonian path, messages are distributed evenly as much as possible, thus making network evenly as much as possible, thus making network performance better. We prove that this algorithm is deadlock-free. And by extensive simulations, we show that this algorithm is superior to the previous ones by 15∼20%.

  • PDF

THE GROUP OF HAMILTONIAN HOMEOMORPHISMS IN THE L-NORM

  • Muller, Stefan
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1769-1784
    • /
    • 2008
  • The group Hameo (M, $\omega$) of Hamiltonian homeomorphisms of a connected symplectic manifold (M, $\omega$) was defined and studied in [7] and further in [6]. In these papers, the authors consistently used the $L^{(1,{\infty})}$-Hofer norm (and not the $L^{\infty}$-Hofer norm) on the space of Hamiltonian paths (see below for the definitions). A justification for this choice was given in [7]. In this article we study the $L^{\infty}$-case. In view of the fact that the Hofer norm on the group Ham (M, $\omega$) of Hamiltonian diffeomorphisms does not depend on the choice of the $L^{(1,{\infty})}$-norm vs. the $L^{\infty}$-norm [9], Y.-G. Oh and D. McDuff (private communications) asked whether the two notions of Hamiltonian homeomorphisms arising from the different norms coincide. We will give an affirmative answer to this question in this paper.

MORE RELATIONS BETWEEN λ-LABELING AND HAMILTONIAN PATHS WITH EMPHASIS ON LINE GRAPH OF BIPARTITE MULTIGRAPHS

  • Zaker, Manouchehr
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.119-139
    • /
    • 2022
  • This paper deals with the λ-labeling and L(2, 1)-coloring of simple graphs. A λ-labeling of a graph G is any labeling of the vertices of G with different labels such that any two adjacent vertices receive labels which differ at least two. Also an L(2, 1)-coloring of G is any labeling of the vertices of G such that any two adjacent vertices receive labels which differ at least two and any two vertices with distance two receive distinct labels. Assume that a partial λ-labeling f is given in a graph G. A general question is whether f can be extended to a λ-labeling of G. We show that the extension is feasible if and only if a Hamiltonian path consistent with some distance constraints exists in the complement of G. Then we consider line graph of bipartite multigraphs and determine the minimum number of labels in L(2, 1)-coloring and λ-labeling of these graphs. In fact we obtain easily computable formulas for the path covering number and the maximum path of the complement of these graphs. We obtain a polynomial time algorithm which generates all Hamiltonian paths in the related graphs. A special case is the Cartesian product graph Kn☐Kn and the generation of λ-squares.

Application of the Special Matrices to the Parallel Routing Algorithm on MR NS Network (MRNS 네트워크에서 특수한 메트릭스를 응용한 병렬 경로배정 알고리즘)

  • Choe, Wan-Gyu;Jeong, Il-Yong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.1
    • /
    • pp.55-62
    • /
    • 1996
  • MRNS network is a general algebraic structure of Hypercube network which has recently drawn considerable attention to supercomputing and message-passing communication. In this paper, we investigate the routing of a message in an n- dimensional MRNS network that is a key to the performance of this network. On the n-dimensional MRNS network we would like to transmit packets from a source node to a destination node simultaneously along a fixed number of paths, where the superscript packet will traverse along the superscript path. In order for all packets to arrive at the destination node quickly and securely, the ith path must be node-disjoint from all other paths. By investigating the conditions of node-disjoint paths, we will employ the special matrices called as the Hamiltonian Circuit Latin Square(HCLS) described in 〔1〕to construct a set of node-disjoint paths and suggest a linear-time parallel routing algorithm for the MRNS network.

  • PDF

Fault-hamiltonicity of Bipartite Double Loop Networks (이분 그래프인 이중 루프 네트워크의 고장 해밀톤 성질)

  • 박정흠
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.19-26
    • /
    • 2004
  • In this paper, we investigate the longest fault-free paths joining every pair of vertices in a double loop network with faulty vertices and/or edges, and show that a bipartite double loop network G(mn;1, m) is strongly hamiltonian-laceable when the number of faulty elements is two or less. G(mn;1, m) is bipartite if and only if m is odd and n is even.

The Design of Parallel Routing Algorithm on a Recursive Circulant Network (재귀원형군에서 병렬 경로 알고리즘의 설계)

  • Bae, Yong-Keun;Park, Byung-Kwon;Chung, Il-Yong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.11
    • /
    • pp.2701-2710
    • /
    • 1997
  • Recursive circulant graph has recently developed as a new model of multiprocessors, and drawn considerable attention to supercomputing, In this paper, we investigate the routing of a message i recursive circulant, that is a key to the performance of this network. On recursive circulant network, we would like to transmit m packets from a source node to a destination node simultaneously along paths, where the ith packet will traverse along the ith path $(o{\leq}i{\leq}m-1)$. In oder for all packets to arrive at the destination node quickly and securely, the ith path must be node-disjoint from all other paths. For construction of these paths, employing the Hamiltonian Circuit Latin Square(HCLS), a special class of $(n{\times}n)$ matrices, we present $O(n^2)$ parallel routing algorithm on recursive circulant network.

  • PDF

One-to-One Disjoint Path Covers in Recursive Circulants (재귀원형군의 일대일 서로소인 경로 커버)

  • 박정흠
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.12
    • /
    • pp.691-698
    • /
    • 2003
  • In this paper, we propose a problem, called one-to-one disjoint path cover problem, whether or not there exist k disjoint paths joining a pair of vertices which pass through all the vertices other than the two exactly once. A graph which for an arbitrary k, has a one-to-one disjoint path cover between an arbitrary pair of vertices has a hamiltonian property stronger than hamiltonian-connectedness. We investigate this problem on recursive circulants and prove that for an arbitrary k $k(1{\leq}k{\leq}m)$$ G(2^m,4)$,$m{\geq}3$, has a one-to-one disjoint path cover consisting of k paths between an arbitrary pair of vortices.