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1. INTRODUCTION

A generalized recursive circulant network(GR)

[1] is widely used in the design and implementation

of local area networks and parallel processing

architectures.

This network denoted by      has


  



 vertices where  ≥ for ≤ ≤ . Index I

is a dimension of the labeling system while  is

the base of dimension . Each vertex in the network

can be expressed as an -tuple       with

≤ ≤  for  . The number of edges

at a node is 


  

 , if  , then   , else   .

The routing of message is thus a key to per-

formance of networks. We look for algorithms that

are capable of handling, multiple data items simul-

taneously transmitted from a starting node to a

destination node. There are a few algorithms on

the hypercube-like network that allow us to locate

n disjoint paths such as the Hamiltonian path

Algorithm[2], the Rotation Algorithm using Tree

Structure[3], the Disjoint Path Algorithm[3], and

the Routing Algorithms[4]. Node-disjoint paths

can be categorized into three classes-one-to-one,

one-to- many, and many-to-many. The first class

considers the disjoint paths from a source node to

a destination node, the second from a source node

to k destination nodes and the third from k source

nodes to k destination nodes. One-to-one disjoint

paths were constructed on several networks such

as hypercubes[5], k-ary n-cubes[6] and star

graphs[7]. One-to-many disjoint paths were de-

signed on hypercubes [8,9] and star graphs [8]. For
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the generation of many-to-many disjoint paths

some work has been done [10,11].

In this paper, we propose an algebraic approach

to routing of messages on    . As

described above, maximum number of packets are

simultaneously transmitted from a starting node to

a destination node, where the  packet is sent

along the ith path. In order for all packets to arrive

at a destination node quickly and securely, the ith

path must be node-disjoint from all other paths.

To accomplish this, we employ the operations of

nodes presented in Cayley Graph[12] and the spe-

cial matrix called as Hamiltonian Circuit Latin

Square(HCLS)[5], which was used to find a set of

node-disjoint paths on hypercube network[5], cir-

culant networks[13] and recursive cube of rings

networks[14].

2. DESIGN OF THE SHORTEST PATH

Let A and B be any two nodes on

    . The paper’s objective is to find

algorithms that will facilitate the transmission of

data from a source node to a desired node on gen-

eralized recursive circulant networks. In order for

the data to traverse to a desired node, it must cross,

successively, intermediate nodes along a path.

Definition 1.      is defined as

follows:

Each vertex in the network can be expressed as

an -tuple       with ≤ ≤  for

  and the edge set E is

{    , ±   ± ,

where     , if   , then

        and if  , then   ,

       .

The number of edges at a node is 


  

 , if

 , then   , else   . It means that if

 , then    has two edges at dim-

ension       and     ,

else it has one edge      . When the

operations occur at the leftmost dimension  ,

since    is invisible, addition and subtraction to

   are neglected. This means that vertices

     and       are adjacent

(see Fig. 1).

Researches on generalized recursive circulant

networks(GR) are actively performed in graph-

ic-theoretical areas such as embedding and fault-

tolerance. As mentioned earlier, a node on Cayley

Graph can traverse to another node by performing

a certain operation. We now employ these oper-

ations to GR.

Definition 2. The Routing function R for ± is

as follows:

 ±  ±mod , where A is an address of
a node

Node A is physically connected to k neighboring

nodes and these paths are node-disjoint. Data is

transmitted from a source node along the  path.

The path above is selected by the routing function

described in Definition 2. To do this, the relative

address of two nodes can be obtained below.

Fig. 1. GR (2,4,3).
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Definition 3. Let A and B be      

and      , respectively. The relative

address  of nodes A and B is computed as the

difference between each dimension of two nodes.

             

Let A and B be (1,2,1) and (3,2,2) on GR(4, 5,

3). The relative address  is (2,0,1), which can be

described as a sequence  of operations  

since    and   . Also,  is interchangeable

to  and  is .

Definition 4. Let T(A,S) be a logical trans-

mission path starting form node A to a destination

node, where r is a multiset and a sequence of oper-

ations, via which data can reach at a destination

node. T(A,S) is determined by the order of ele-

ments in S.

Given node A and multiset S on GR(4,5,3), we

would like to transmit to a destination node via in-

termediate nodes. Let node A and set S be (1,2,1)

and <3,3,1>, respectively. Operations in S are ap-

plied to the routing function sequentially and then

the traversal of data is (1, 2, 1) → (2, 2, 1) → (3,

2, 1) → (3, 2, 2).

Since the paper’s objective is to find an algo-

rithm that will facilitate the secure transmission of

data from a starting node to a destination node,

those operations should be appropriate for this

objective. Given S, a size of this sequence must

be minimized since a routing distance is equal to

a size of a sequence.

For example, supposed that S =  

on GR(4,5,3). then S can be minimized to

 since  mod    and a

carry 1 is added to  .

3. Application of the Hamiltonian Circuit 

Latin Square to the Parallel Routing 

Algorithm on Generalized Recursive 

Circulant Networks

The k packets are transmitted from a source

node to a destination node on    .

In this section, we would like to construct a set

of k node-disjoint paths in order to transmit these

packets safely. First, k packets residing at a node

are sent to its neighboring nodes along a set of

disjoint paths. These paths are generated by em-

ploying k different operations at the beginning step

and by performing k different operations at the last

step in order to arrive at a destination node. The

figure below illustrates the operations applied to

generate k paths from a source node to a destina-

tion node.

The  packet is transmitted along the  path,

the first intermediate node of which is obtained

from applying operation  at a starting node and

the last intermediate node transmits this packet to

a destination node by applying operation  . In

some cases,  and  can be the same.

Definition 5. Let   be a set of operations oc-

curring at a starting node when k packets are

transmitted simultaneously and Let   be a set of

operations occurring at the last k intermediate no-

des in order for k packets to arrive at a destination

node. These sets are defined as follows:

 {  }

 {  }

  

We now apply the HCLS(Hamiltonian Circuit

Latin Square) to find a set of m shortest and

node-disjoint paths. A latin square is a square ma-

Fig. 2. The operations applied at the first step and the 

last step.
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trix with  entries of m different elements, none

of the elements occurring twice within any row or

column of the matrix. The integer m is called the

order of latin square. The next definition describes

the HCLS.

Definition 6. The HCLS   is constructed as

follows: Given distinct m points   ,

a Hamiltonian circuit →→→→ is randomly

selected. On the circuit each row of  can be ob-

tained from the Hamiltonian path. starting at any

position ≤≤, under the condition that

no two rows begin at the same position. If a

Hamiltonian path is →→→ , then the row ob-

tained from it is   .

From the HCLS given in Definition 6, the

MHCM(Modified Hamiltonian Circuit Matrix) is

constructed below.

Definition 7. Given the HCLS  , the

MHCM   is constructed as follows:   

     ∈  ≤ ≤    ≤ ≤   .

The following example will provide a better un-

derstanding of Definition 6 & 7.

Example 1. If the Hamiltonian path is 2 → 3

→ 1 → 4, then the HCLS  and the MHCM 

are constructed as follows.













   
   
   
   













  
  
  
  

 

Definition 8. Call  the MGNDP(Matrix for

Generating Node-Disjoint Paths). No two entries

of this matrix are the same. It satisfies the follow-

ing conditions.

  ⊂{∪{}},

≤ ≤≤≤  means “stay at the cur-

rent node”.

(1)   

(2) ≠i f≠

(3)  ⊂ 

(4)   ∪{}, if ∈

Referring to [5], the MHCM satisfies the con-

ditions of the MGNDP(Matrix for Generating

Node-Disjoint Paths), which constructs a set of

node-disjoint paths on the hypercube network.

Since The HCLS belongs to the latin square, a set

of elements in the first column is the same as that

of the last column. On generalized recursive circu-

lant networks, an element in the HCLS is repre-

sented as an operation. Also,   and   in

Definition 5 are described as all the elements in the

first column and all the elements in the last column,

respectively. We, intuitively, realize that a set of

m node-disjoint paths is generated if the number

of distinct sequences of operations for arriving at

an arbitrary node in a short time is ≤. The

remaining operations excluding these distinct op-

erations from   and   , should be performed.

Example 2. Let A and B be (1,2,1) and (3,2,2)

on . According to Definition 4, sequence

S is computed as < 3, 3, 1 > and a set of node-dis-

joint paths is generated as follows. A set of distinct

operations in S is < 1, 3 >. Using these operations,

(2 × 2) HCLS can be obtained from Definition 6.

 


 


 

 

Operations in the  row of the HCLS generated

above are performed for traversal of the  packet

and the remaining operation is also executed at the

point except the first and the last points. In order

to assure that these paths are node-disjoint, the

remaining operation should be executed at the

same time. In this example, the running point of

the remaining operation is the second. Physical

transmission paths from node A to node B are de-

scribed below.

Path 1 : T(A,< 1, 3, 3 >) : A → (1, 2, 2) → (2,

2, 2) → B

Path 2 : T(A,< 3, 3, 1 >) : A → (2, 2, 1) → (3,
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2, 1) → B

From Definitions 1 and 6,   and   are ob-

tained, that is,   {}. Excluding

the operations 1 and 3, which are performed in the

first and the last steps, from   and   ,   and

  become {}. Recall that we deal with

design of six node-disjoint paths, out of which two

node-disjoint paths are now constructed. Examin-

ing Definition 2, when a packet traverses in a pos-

itive direction on the  dimension and then tra-

verses in a reverse direction on the same di-

mension, a packet comes back to its original

position. This idea is applied to generation of dis-

joint paths. If {} exists as a subset of   and

  , these operations are executed at the first and

the last steps and the operations obtained from de-

sign of the shortest distance at the middle steps.

Path 3 and Path 4 are constructed below.

Path 3 :   : A → (1, 3, 1) → (1,

3, 2) → (2, 3, 2) → (3, 3, 2) → B

Path 4 :   : A → (1, 1, 1) → (1,

1, 2) → (2, 1, 2) → (3, 1, 2) → B

Excluding {} from   and   ,   and  

become {}. While operations working at the

first and the last steps are not the same, operations

performing at the remaining steps are the same.

As described earlier for Path 3 and Path 4, a packet

traverses in a positive direction on the  di-

mension and then traverses in a reverse direction

on the same dimension. Likewise a packet tra-

verses twice in the same direction on the  di-

mension and then traverses twice in the reverse

direction on the same dimension, and then this

packet comes back to its original position. A se-

quence of operations for a path is now obtained.

Firstly, two operations traversed in the same di-

rection are chosen for the first and the last steps.

Secondly, two operations in reverse direction and

the operations for the shortest distance would be

executed at the middle steps. However, these oper-

ations must be minimized in order to be a shortest

path and then the minimal operations are executed.

Paths 5 and 6 are generated by handling cases of

{} and {}, respectively.

Path 5 :

   : A

→ (1, 2, 0) → (1, 3, 0) → (2, 3, 0) → (3, 3, 0) → B

Path 6 :

   : A →

(0, 2, 1) → (0, 2, 2) → B

The process to find a set of node-disjoint paths

is described above. We now propose a parallel

routing algorithm that generates a set of node-dis-

joint paths on generalized recursive circulant

networks. In this paper, we will use the term

“distance” between two nodes to refer to the num-

ber of routing steps(also called hopcounts) needed

to send a message from one node to another.

GR_Routing_Algorithm

A ← an address of a starting node A

B ← an address of a destination node B

  ← a set of operations occurring at a starting

node A

  ← a set of operations requisite for reaching

to a destination node B

begin

(1) Compute the relative address r of nodes A

and B

(2) Using the relative address r, a sequence S

of operations to arrive at node B in a short time

are produced.

(3) In order to design a set of node-disjoint

paths, find a sequence  of distinct elements in

S. A set of  shortest and node-disjoint paths

are generated. Each path of length is | S |,

(3-1) Using  , (n × n) HCLS is constructed,

where n = .

(3-2) Operations in the  row of the HCLS

are performed for traversal of the  packet and

the remaining operations in S should be executed



1088 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 18, NO. 9, SEPTEMBER 2015

at the point except the first and the last points.

(3-3)   ←   −  and   ←   − 

(4) Construct two node-disjoint paths, each path

has length   .

(4-1) If   = , the process is finished.

(4-2) If a set of {} is found in   , then

these operations are performed at the first and the

last steps, and the operations in S at the middle

steps, otherwise go to (5).

(4-3)   ←   - {},   ←   - {} and

go to (4-1).

(5) Generate the remaining paths.

(5-1) If   = , the process is finished.

(5-2) For ∈  , produce  of mini-

mum number of operations by reducing the size of

S ∪ {},  = {i, min(S ∪ {}), i}

(5-3) Operation i is performed at the first and

the last steps and the remaining operations of 

are executed at the middle steps.

(5-4)   ←   - {},   ←   - {} and go

to (5-1).

end.

GR_Routing_Algorithm is thus fairly straight-

forward. The time involved in performing Steps

(1), (2) and (4) is small compared to the remaining

steps. The first, second and fourth steps of this al-

gorithm does not, therefore, contribute to an ob-

jectionable overhead.

Theorem 1. The construction of a set of k

node-disjoint paths can be performed in O(n2)

time.

Proof: Applying the Algorithm above to generate

k node-disjoint paths. Important steps for de-

termining time complexity requisite for the

Algorithm are two things. One is to design the

HCLS, which requires O(n). The other is to run

Step (5) of GR_Routing_Algorithm. In Step (5), in

order to run  in   at the first and the last steps

in transmission, a sequence of operations is de-

termined to S ∪{ }, and is reduced. Since the

reduction process requires O(n) time and the num-

ber of elements in   is less than n, Step (5) can

be computed in O(n2). Therefore, a set of k

node-disjoint paths can be created in O(n2) time.

The paper’s objective is to find a set of k

node-disjoint paths between two nodes. The major

topological characteristics of the generalized re-

cursive circulant network is considered and the

property of k paths obtained from the Algorithm

is proven below.

Theorem 2. The k transmission paths produced

by GR_Routing_Algorithm are node-disjoint.

Proof: The k packets residing at node A are now

transmitted at time  . These packets reach to its

k neighboring nodes at time  . Then, each packet

traverses to a neighboring node along a shortest

path. Suppose that two packets arrive at the same

node except a destination node during transmission.

In order for this case to occur, the following con-

dition should be satisfied. Let  and  be two se-

quences of operations for sending two packets

from a starting node to two arbitrary nodes at time

 , where  means that one packet arrives at time

 and the other arrives at time . Then,  and

 should be the same. In other words, if these se-

quences do not appear, a set of node-disjoint paths

can be constructed. According to the Algorithm

described above, three classes of paths are gen-

erated on this network. We now consider three

cases.

Case 1: Let  and  be two sequences of oper-

ations obtained from design of the shortest

distance. Then  and  must not be the same

due to the properties of the MGNDP.

Case 2: Let  and  be two sequences of oper-

ations acquired by running Algorithm-(4). Then

 and  must not be the same because the first

elements of  and  are  and 
 , respectively
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and the rests of them are the same. In order for

paths generated through case 1 and case 2 to be

node-disjoint, we prove that  and  must not

be the same. Considering the first element  of

 , it is not an element of  . Therefore, these se-

quences are different all the times.

Case 3: Let  and  be two sequences of oper-

ations generated by performing Algorithm-(5), and

T be a sequence of operations, which creates a

shortest path from a source node to a desired node.

Then, the first elements of  and  do not belong

to T,  does not contain the first element of ,

and  does not contain the first element of  .

So,  and  should not be the same.

To prove that the paths created by all the cases

are node-disjoint,  and  must not be the same.

The method of proof is the same as the case 2.

Looking into the first element of  , the element

is not a part of  . Therefore, these sequences are

different all the time.

4. CONCLUSION

In this paper, we present the algorithm that gen-

erates a set of k node-disjoint paths on

    , employing the Hamiltonian

Circuit Latin Square(HCLS). Important steps for

determining time complexity requisite for the algo-

rithm are two things. One is to design the HCLS,

which needs O(n). The other is to execute Step

(5) of GR_Routing_Algorithm, which requires

O(n2). Therefore, we can create O(n2) parallel

routing algorithm for constructing a set of k

node-disjoint paths.
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