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HAMILTONIAN PATHS IN INFINITE

STRONG TRIANGULATIONS

HWAN-OK JUNG

1. Introduction

We shall, for the most part, use the terminology of [2]. Graphs will
be finite or infinite, but have no loops or multiple edges. For a vertex
v of G, denote by NG(v) the set of vertices adjacent to v in G, and
by dG(v) the cardinal number of NG(v). An x,y-path is a path joining
vertices x and y in G, and in this case x and y are called the endvertices
of the path. A path P is one-side infinite if it contains infinitely many
vertices and dp(x) = 1, for only one vertex x in P. In this case the
vertex x is said to be the endvertex of P.

Let G be a plane graph and let C be a cycle in G. We denote by
C the subgraph of G consisted of the vertices and the edges lying on
C and lying in the interior of C. A plane graph H is a circuit graph,
following D.Barnette, if there exists a cycle C in a3-connected plane
graph such that H = C. A circuit graph H is triangulated if all facial
cycles of H, up to the outer cycle, are triangles.

A triangulation G is a countable locally finite plane graph, of which
edges are contained in two non-separating triangles. IT a representation
of the graph G contains no vertex- or edge-accumulation points, then
G is called a strong triangulation.

Whitney [8] proved every finite 4-connected maximal planar graph
has a Hamiltonian cycle, and Tutte [7] and Thomassen [6] extended his
result to all 4-connected planar graphs. In particular, Thomassen [6]
showed that every 4-connected planar graph is Hamiltonian-connected,
i.e., it has a Hamiltonian path connecting any two prescribed vertices.
On the other hand, Dillencourt [3] observed the condition for inter­
nally maximal planar graphs to have a Hamiltonian cycle, and so he
proved that every triangulated circuit graph without separating tri­
angles, which contains at most three chordal edges, is Hamiltonian.
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A simplified proof of Whitney's theorem and a linear algorithm for
finding a Hamiltonian cycle in such a graph, can also be found in [1].

Nash-Williams ([4], see also in [5]) conjectured that this theorem is
also true for all infinite 4-connected planar graphs, i.e., every infinite
4-connected planar graph has a one-side infinite Hamiltonian path.

In this paper Whitney's theorem will be extended to the infinite
strong triangulations under the corresponding hypothesis, which is a
part of Nash-williams' conjecture.

Namely, we prove the following theorem.

THEOREM. Let G be a 4-connected infinite strong triangulation.
Then there exists a one-side infinite Hamiltonian path in G originating
from any prescribed vertex.

For the proof, important tools are the structure theorem (in sec­
tion 2), Whitney's theorem (in section 3) and the so-called Konig's
Unendlichkeitslemma, which is stated below:

LEMMA (KONIG). Let {PI, 1'2, P 3... } be an infinite sequence of
disjoint non-empty finite sets and R be a relation in l' := U;:o Pj,
such that

Vj E N, VP' E Pj+I,3P E Pj such that (P, P') E R.

Then there exists an infinite sequence of paths {PI, P2 , P3 , •.• } such
that Pi E Pi and (Pi, Pj+I) E R.

To investigate the structure of an infinite strong triangulation, we
in addition have to define several important conditions.

Let C and C' be two disjoint cycles in an infinite strong triangulation
G, where C lies in the interior of C'. A (C, C')-ring is a subgraph of G,
which consists of not only C and C' but also the vertices and edges lying
between C and C'. For a (C, C')-ring R, a bridge of R is either an edge
of R joining C and C' (such a bridge is called a chordal edge, following
Dillencourt [3]), or it is a connected component of R-(CUC') together
with all edges of R joining this component to C U C'. A (C,C')-ring
R is normal if it satisfies the following properties:

(1) C and C' are induced cycles.
(2) WeB) n V(C')l ~ 2, for any bridge B of R.
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(3) H V(B) nV(C' ) = {z, Z'}, z =1= Z', for a bridge B, it must hold
ZZI E E(G).

2. Structure of infinite strong triangulations

LEMMA 1. Let C be an induced cycle of an infinite strong trian­
gulation G. Then there exists a cycle C' such that the (C, C')-ring is
normal.

Proof. First, we construct a cycle C' in G satisfying the hypothesis
of this lemma.

Let F := {JIJ is a facial cycle in G such that V(J) n V(C) =1= 0}
and let E be the set of all vertices of the cycles in F. Then we can
see that IEI < 00, since E contains only finite cycles and F is also
finite. Furthermore, set H := G[E], i.e. H is the induced subgraph of
G containing all elements of E, and let C' be its outer cycle of H. We
will now show the (C, C')-ring R is normal.

As an induced subgraph H of G, C' is an induced cycle. The as­
sertion (3) is also obvious from the assumption. To show that C and
C' are disjoint, we assume: 3x E V(C) n V(C'). Let Y be a vertex on
C' adjacent to x. Then, from the fact that all facial cycles in G are
triangles, we can find a facial cycle J = {x, Y, z} such that yz rt E(C').
But since the cycle must be contained in F (since V(J) n V(C) =1= 0),
it follows that y, z E E. Hence we have yz E E(H), which contradicts
our construction of C'.

It remains to be shown that jV(B) n V(C')I :$ 2 for every bridge
B of R. Suppose there exists a bridge B such that V(B) n V(C') =
{vb ... ,Yr}, r ~ 3. Since B is not a chordal edge and V(B)\V(C U
C') =1= 0, it follows that there exists a Yl,Yr-path P in B - (C U
{Y2, ... ,Yr-l}). Thus the facial cycle in R containing the edge YleYk+l
(k = 1, ... , r - 1) is not contained in F, and therefore it holds that
YIe rt E, k = 2, ... , r - 1, which also contradicts our construction of
C'. 0

REMARK. We can prove that such a cycle C' is unique for a given
induced cycle C.

LEMMA 2. For any cycle C of an infinite strong triangulation, the
induced subgraph C is a triangulated circuit graph.
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Proof As every strong triangulation has a vertex-accumulation po
int free representation, C is a finite subgraph, and hence it is a circuit
graph. It is also obvious that C is triangulated. 0

PROPOSITION 3. Let G be a 4-connected strong triangulation. Let
Xo be a vertex of G and let Co be the cycle of G consisting of the
vertices adjacent to xo. Then there exists a sequence of induced cycles
{Co, Cb C2 , ••• ,} which holds the following properties:

(1) The (Cj-b Cj)-ring is normal for all j E N.
(2) V(G) = V(Uj:o Cj).

Proof. It is clear that Co is an induced cycle by the fact of 4-con­
nectedness of G. For j E N the existence of Cj , related to Cj - l ,

satisfying the condition (1) follows from lemma 1. It remains only to
show that the resulting cycles {Co, Cl, C2 , ••• } hold the condition (2).

Let x E V(G) be an arbitrary vertex. Since Cj-l lies in the interior
of Cj (j EN), it follows that x E V(Cn:), where n x is a metric
distance between x and xo. Because of V(Cn:) C V(Uj:o Cj), we have
V(G) ~ V(Uj:o Cj). Since it holds clearly that V( G) 2 V(Uj:o Cj),
we can conclude V(G) = V(Uj:o Cj ). 0

REMARK. We can also prove that, for an arbitrary given vertex Xo,
such a sequence of induced cycles with the condition (1)-(2) is unique.

Let C be an induced cycle in an infinite strong triangulation G.
According to lemma 2 we can construct a cycle C' in G such that
(C, C')-ring R is normal. We let F be the set of all chordal edges of R
and let BG(R):= (CUC')UF. Then we have exactly IFI facial cycles
in BG(R), up to the interior of C and the exterior of C'. For a facial
cycle J of BG(R) the induced subgraph J of G is called a chamber of
R. IT J = J, then the chamber J is empty. Clearly in the interior of a
chamber lies at most one bridge of R since G is maximal planar.

Now we let G be 4-connected and let L be a nonempty chamber of
R. Because of the conditions (2) and (3) in definition of normality, L
must be one of following two types:

(i) IV(L) n V(C/)I = 1,
(ii) IV(L) n V(C/)I = 2.

In the former case we say that L is of type 1 and in the latter case
that L is of type 2.
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3. Whitney's theorem and its extensions
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The following notations are useful for the concept and proof of Whit­
ney's lemma and its corollaries.

A path P on C is wh-induced if there exists no edge xy E E( H) \
E(C), x,y E V(P). For distinct vertices u,v (resp. u,v,w) on C, we
say that (H,u,v) (resp. (H,u,v,w)) satisfies condition Wl (resp. W2)
if the two u, v-paths (resp. the u, v-, v, w- and w, u-path) on C are
wh-induced. Note that according to our definition (H, 'U, v) satisfies
W1 if and only if (H,u,v,w) satisfies W2 for every vertex w on C.

LEMMA 4 (H.WHITNEV). Let H be a triangulated circuit graph
without separating triangles and let C be its outer cycle. Finally let 'U

and v be two distinct vertices on C. If (H, u, v) satisfies the condition
W1 or if (H, 'U, v, w) satisfies W2 for some vertex w on C, then H
contains a Hamiltonian u, v-path.

Proof. See in [8]. 0

LEMMA 5. Let H be a 3-connected triangulated circuit graph with­
out separating triangles and let C be its outer cycle with IV(C)I 2: 4.

(1) Let y E V(C), and let u,v be the vertices adjacent to y on C.
Then there exists a Hamiltonian u, v-path in H - y.

(2) Let yy' E E(C) and let u (resp. v) be the vertex adjacent to y
(resp. y') on C such that u 1= y' and v 1= y. Then there exists
a Hamiltonian u, v-path in H - {y, y'}.

Proof. (1) Set H' := H -y. Then H' clearly is a triangulated circuit
graph, because it is 2-connected. Let J be the outer cycle of H' and
let J1 and J2 be the u, v-paths on J with J1 = C - y. Then the
vertices of h are identical to the vertices adjacent to y in H since H
is triangulated. Note that J1 is wh-induced. We will show h also is
wh-induced.

Suppose that there is an edge xx' in E(H)\E(h) contained in the
interior of J. Then the vertices {x,x',y} separate H in two com­
ponents, and hence H contains a separating triangle since xx', x'y E
E(H). So we have a contradiction to the hypothesis of this lemma.

Therefore (H',u,v) satisfies W1, and so H' = H - y contains a
Hamiltonian u, v-path, by the Whitney's lemma.
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(2) From yy' E V(C) and W(C)I 2:' 4, H' := H - {y,y'} is 2­
connected, and from this it is a triangulated circuit graph. Let J be
the outer cycle of H', and let J1 and J2 be the u, v-paths on J such
that J1 = C - {y,y'}. Then we have V(h) = NG({y,y'}). We first
note that J1 is wh-induced. Let us consider the path h.

Since H' is triangulated we can easily verify that there exists a u, v­
path J~ such that

(i) V( J~) ~ V(J2 ),

(ii) J~ is induced path if W(C)I ~ 5,
and J~ U {uv} is induced cycle if W(C)I = 4.

IT V(JD = V(J2 ), then J2 is wh-induced, and so (H',u,v) satisfies
Wl.

Now assume that V(J~) C V(J2 ). From the fact H contains no
separating triangles, it is easy to see that there exists only one edge
e E E(H) such that e E E(J~)\E(J2). Let w be the vertex of J2 such
that {y, y', w} constitutes a facial cycle of H. Then, as in the proof
of (1), it can be verified that the u, w- and v, w-path on J2 are wh­
induced. Therefore (H', u, v, w) satisfies W2, and hence, in both cases,
we can find a Hamiltonian u, v-path in H' = H - {y, y'} by Whitney's
lemma. 0

LEMMA 6. Let H be a triangulated circuit graph without separating
triangles and let C be its outer cycle. Let u, v E V(C), u =I v, ahd
e E E(C) arbitrary (but e =I uv ifuv E E(C»). H(H, u, v) satisfies the
condition W1, then H has a Hamiltonian u, v-path which contains the
edge e.

Proof. Let e := xy E E(C) and let w be a further vertex not in H.
We construct a graph H as follows:

V(H) := V(H) U {w} E(H):= E(H) U {xw, yw}.

Then H again is triangulated and (H, u, v, w) further satisfies W2, and
hence there exists a Hamiltonian u, v-path P in H by Whitney's lemma.
Let V(P) := V(P)\{w} and E(P) := E(P) U{xy} \ {xw, yw}. Since P
must contain the edge xw and yw, the u, v-path P is Hamiltonian in
H containing the edge e = xy. 0
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4. Proof of the main theorem

Let R be a normal (C, C')-ring in a 4-connected infinite strong tri­
angulation G. We choose an arbitrary vertex Yo in V(C'). Let fi
be the first vertex adjacent to Yo on C', counterclockwise, and set
M := Na(fi) n V(C). We note that M is non-empty since G is maxi­
mal planar. Let Xl be the first vertex in M, also counterclockwise, and
{Xll ... ,xd ~ V(C)nNa(C'). (i.e. for every i E {l, ... ,m}, there
exists a vertex y E V{C') with XiY E E{G), and conversely). Then
for every i E {l, ... ,m} and for each pair {Xi,Xi+d we can find ex­
actly one chamber Li such that Xi, XHI E V{L i). Let Xo be the vertex
adjacent to Xm on C lying between Xm and xo. (If XmXI E E{C) we
let Xo = xd. We will prove there exists a Hamiltonian xo, yo-path in
R - (V(C') \ {yo}).

(1) The chamber Li{i = 1, ... ,m -1).
Case 1: L i is of type 1:

Let y E VeLd n V{C'). If Li is empty we let Pi := {Xi,xHd. Oth­
erwise Li clearly is a 3-connected triangulated circuit graph without
separating triangles. Since Xi and XHI are adjacent to y on the outer
cycle of L i we can find a Hamiltonian Xi, XHI-path Pi in Li - Y by
lemma 5 (1).

Case 2: Li is of type 2:

Let y,y' E V{Li) n V{C'). Since R is normal, yy' must be an edge
of Li. Analogously it can be verified that Li satisfies the hypothesis of
(2) in lemma 5. Therefore we can also find a Hamiltonian Xi, Xi+rpath
Pi in Li - {y, y'}.

(2) The chamber L m •

Let J be the outer cycle of Lm . Because of the choice of Xll it is
clear that Yox m, yXI E E{G). We will construct a Hamiltonian Xll Yo­
path P in L m (resp. L m - fi) containing the edge XmXo if L m is of
type 1 (resp. type 2), where the vertex Xo is defined at the beginning
of this section.

Case 1: L m is of type 1:

Let V(L m ) n V{C') =: {yo}. If L m is empty, then we let P
Lm - {XlYO}. Otherwise L m is 3-connected and !V(J)I ~ 4. Because
XlYO =f:. XmXo, L m satisfies the hypothesis of lemma 5 (corresponding
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to the vertices Xl, Yo and the edge xmxo). Therefore there exists a
Hamiltonian Xl, yo-path P in L m containing the edge XmXo.

Case 2: L m is of type 2:

Let V(Lm) n V(C') =: {yo,y}. In this case L m is not empty, so it
is 3-connected. As in the proof of lemma 5, (Lm - y, Xl, Yo) satisfies
the condition W1, so, by Whitney's lemma, there exists a Hamiltonian
XI, yo-path P in L m - Y containing the edge XmXo

In each case we let Po be the xo,xl-pathof P and Pm be the Xl, Xm­
path of P. Then V(Po) U V(Pm) = V(P) and E(Po) U E(Pm) =
E(P)\{xmxo} since P contains the edge XmXo.

Now we summerize all chambers Ll , ... , Lm-l, Lm. For a given
normal (C, C')-ring R in G and for an arbitrary given vertex Yo on C',
the chambers L l , . .. ,Lm are fixed. From (1) and (2) we have m + 1
paths Po, PI,"" Pm in R, such that:

(1) for i = 0, ... ,m -1 the endvertices of Pi are Xi and Xi+!, and
those of Pm are Xm and Yo.

(2) V(Pi) = V(Li-C') for i = 0, ... ,m-I, and V(PO)UV(Pm) =
V(L m ).

Let P := U:'o Pi· Then P is a Xo, yo-path in R which covers all vertices
of (R - C') U {yo}. ThUs we have:

PROPOSITION 7. Let R be a normal (C, C')-ring in a 4-connected
infinite strong triangulation and let Xo, Yo be the vertices defined at the
beginning of tbis section. Then there exists a Xo, yo-path in R wbicb
covers all vertices of (R - C') U {Yo}. 0

We can now prove the main theorem of this paper with the aid of
Konig's lemma.

Let G be a 4-connected infinite strong triangulation and Xo an arbi­
trary given vertex of G. We let Co be the induced cycle of G consisting
of the vertices adjacent to Xo. Then, by proposition 3, we have a
sequence of induced cycles {Co, Cl, C2 , ••• } satisfying the same condi­
tions (1)-(2) in the proposition.

For j E N, let Ri be the (Ci-b Ci)-ring and let Pi be the set of all
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paths in Rj such that:
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{

i) P is a x, y-path in Rj

if and only if with x E V(Cj-d and y E V(Cj),

ii) E(P) = E(Rj - Cj) U {y}.

We will further define a relation n ~ P x P, where P := U}:l Pj:

(P,PI
) E n . . {i) 3j E Nj PE Pj and p' E Pj+I,

If and only If
ii) P and P' have a common endvertex.

We will show that the relation n holds the hypothesis of Konig's
lemma. Clearly we have Pj i= 0 and IPjl < 00 for all j E N. For
any j E N, let pI E Pj+l be an arbitrary element. Then, by the
definition of pI, one of its endvertices of pI, say x', is contained in
Cj and the another in Cj +l . By proposition 7, we can find a x,x '­
path P in Rj with x E V(Cj-d and V(P) = V(Rj - Cj) U {x'},
and from this we have P E Pj and (P, PI) E n. Thus, by Konig's
lemma, there exists an infinite sequence of paths {PI, P2 , ••• } such
that Pj E Pj and (Pj,Pj+l) E n for all j EN. We now let Xl be the
endvertex of PI lying on Co and set Po := {xoxd· Then P := U}:o Pj
clearly is a one-side infinite path in G. Because of V (G) = {xo} U
V(U}:l Pj) = V(U}:o Cj) by proposition 3, P is a Hamiltonian path
in G originating from the endvertex Xo, and this completes the proof
of the main theorem.
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