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HAMILTONIAN PATHS IN INFINITE
STRONG TRIANGULATIONS

HwaN-OK JUNG

1. Introduction

We shall, for the most part, use the terminology of [2]. Graphs will
be finite or infinite, but have no loops or multiple edges. For a vertex
v of G, denote by Ng(v) the set of vertices adjacent to v in G, and
by dg(v) the cardinal number of Ng(v). An z,y-path is a path joining
vertices z and y in G, and in this case z and y are called the endvertices
of the path. A path P is one-side infinite if it contains infinitely many
vertices and dp(z) = 1, for only one vertex z in P. In this case the
vertex z is said to be the endvertez of P.

Let G be a plane graph and let C be a cycle in G. We denote by
C the subgraph of G consisted of the vertices and the edges lying on
C and lying in the interior of C. A plane graph H is a circuit graph,
following D.Barnette, if there exists a cycle C in a 3-connected plane
graph such that H = C. A circuit graph H is triangulated if all facial
cycles of H, up to the outer cycle, are triangles.

A triangulation G is a countable locally finite plane graph, of which
edges are contained in two non-separating triangles. If a representation
of the graph G contains no vertex- or edge-accumulation points, then
G is called a strong triangulation.

Whitney [8] proved every finite 4-connected maximal planar graph
has a Hamiltonian cycle, and Tutte [7] and Thomassen [6] extended his
result to all 4-connected planar graphs. In particular, Thomassen [6]
showed that every 4-connected planar graph is Hamiltonian-connected,
i.e., it has a Hamiltonian path connecting any two prescribed vertices.
On the other hand, Dillencourt [3] observed the condition for inter-
nally maximal planar graphs to have a Hamiltonian cycle, and so he
proved that every triangulated circuit graph without separating tri-
angles, which contains at most three chordal edges, is Hamiltonian.
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A simplified proof of Whitney’s theorem and a linear algorithm for
finding a Hamiltonian cycle in such a graph, can also be found in [1].

Nash-Williams ({4], see also in [5]) conjectured that this theorem is
also true for all infinite 4-connected planar graphs, i.e., every infinite
4-connected planar graph has a one-side infinite Hamiltonian path.

In this paper Whitney’s theorem will be extended to the infinite
strong triangulations under the corresponding hypothesis, which is a
part of Nash-williams’ conjecture.

Namely, we prove the following theorem.

THEOREM. Let G be a 4-connected infinite strong triangulation.
Then there exists a one-side infinite Hamiltonian path in G originating
from any prescribed vertex.

For the proof, important tools are the structure theorem (in sec-
tion 2), Whitney’s theorem (in section 3) and the so-called Konig’s
Unendlichkeitslemma, which is stated below:

LEMMA (KONIG). Let {Py,P2,Ps...} be an infinite sequence of
disjoint non-empty finite sets and R be a relation in P := U?io P;,
such that

Vj € N, VP' € Pj41, 3P € P; such that (P,P') € R.

Then there exists an infinite sequence of paths {Py, Py, P3,...} such
that P; € P; and (Pj, Pj+1) € R.

To investigate the structure of an infinite strong triangulation, we
in addition have to define several important conditions.
Let C and C' be two disjoint cycles in an infinite strong triangulation
G, where C lies in the interior of C’. A (C, C')-ring is a subgraph of G,
which consists of not only C and C' but also the vertices and edges lying
between C and C'. For a (C,C")-ring R, a bridge of R is either an edge
of R joining C and C' (such a bridge is called a chordal edge, following
Dillencourt [3]), or it is a connected component of R—(CUC") together
with all edges of R joining this component to C U C'. A (C,C')-ring
R is normal if it satisfies the following properties:
(1) C and C' are induced cycles.
(2) V(B)NnV(C')| <2, for any bridge B of R.
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3) EV(B)NV(C') = {z,2'}, z # 2/, for a bridge B, it must hold
zz' € E(G).

2. Structure of infinite strong triangulations

LEMMA 1. Let C be an induced cycle of an infinite strong trian-
gulation G. Then there exists a cycle C' such that the (C,C')-ring is
normal.

Proof. First, we construct a cycle C' in G satisfying the hypothesis
of this lemma.

Let F := {J|J is a facial cycle in G such that V(J) N V(C) # 8}
and let E be the set of all vertices of the cycles in F. Then we can
see that |E| < oo, since E contains only finite cycles and F is also
finite. Furthermore, set H := G[E], i.e. H is the induced subgraph of
G containing all elements of E, and let C' be its outer cycle of H. We
will now show the (C, C')-ring R is normal.

As an induced subgraph H of G, C' is an induced cycle. The as-
sertion (3) is also obvious from the assumption. To show that C' and
C' are disjoint, we assume: 3z € V(C) N V(C'). Let y be a vertex on
C' adjacent to x. Then, from the fact that all facial cycles in G are
triangles, we can find a facial cycle J = {z,y, z} such that yz ¢ E(C').
But since the cycle must be contained in F (since V(J)NV(C) # §),
it follows that y,z € E. Hence we have yz € E(H), which contradicts
our construction of C’.

It remains to be shown that |V(B) N V(C')| < 2 for every bridge
B of R. Suppose there exists a bridge B such that V(B)NV(C') =
{v1,-..,yr}, 7 2 3. Since B is not a chordal edge and V(B)\V(C U
C') # 0, it follows that there exists a y;,y,-path P in B — (C U
{y2,-..,¥r—1}). Thus the facial cycle in R containing the edge yxyr+1
(k =1,...,7r — 1) is not contained in F, and therefore it holds that
yr ¢ E, k = 2,...,r — 1, which also contradicts our construction of

C'. O

REMARK. We can prove that such a cycle C’ is unique for a given
induced cycle C.

LEMMA 2. For any cycle C of an infinite strong triangulation, the
induced subgraph C is a triangulated circuit graph.
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Proof. As every strong triangulation has a vertex-accumulation po
int free representation, C is a finite subgraph, and hence it is a circuit
graph. It is also obvious that C is triangulated. [

PROPOSITION 3. Let G be a 4-connected strong triangulation. Let
zo be a vertex of G and let Cy be the cycle of G consisting of the
vertices adjacent to xo. Then there exists a sequence of induced cycles
{C4,C4,C>,...,} which holds the following properties:

(1) The (Cj-1,C;)-ring is normal for all j € N.
(2) V(&) =V(U;Z,C))

Proof. Tt is clear that Cy is an induced cycle by the fact of 4-con-
nectedness of G. For j € N the existence of Cj, related to C;_,,
satisfying the condition (1) follows from lemma 1. It remains only to
show that the resulting cycles {Cy, Cy,Ca,... } hold the condition (2).

Let £ € V(G) be an arbitrary vertex. Since C;j_; lies in the interior
of C; (j € N), it follows that z € V(Cn_), where n, is a metric
distance between  and . Because of V(C»,) C V(Uj2, C;), we have
V(G) € V(U;j2, Cj)- Since it holds clearly that V(G) 2 V(UZ, C),
we can conclude V(@) =V({Ji2,C;). O

=0
REMARK. We can also prove that, for an arbitrary given vertex zo,
such a sequence of induced cycles with the condition (1)~(2) is unique.

Let C be an induced cycle in an infinite strong triangulation G.
According to lemma 2 we can construct a cycle C' in G such that
(C,C")-ring R is normal. We let F be the set of all chordal edges of R
and let BG(R) := (CUC")UF. Then we have exactly |F| facial cycles
in BG(R), up to the interior of C and the exterior of C'. For a facial
cycle J of BG(R) the induced subgraph J of G is called a chamber of
R. X J = J, then the chamber J is empty. Clearly in the interior of a
chamber lies at most one bridge of R since G is maximal planar.

Now we let G be 4-connected and let L be a nonempty chamber of
R. Because of the conditions (2) and (3) in definition of normality, L
must be one of following two types:

() V(Z)nV(CHl =1,
(z2) [V(L)nV(C) =2.

In the former case we say that L is of type I and in the latter case

that L s of type 2.
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3. Whitney’s theorem and its extensions

The following notations are useful for the concept and proof of Whit-
ney’s lemma and its corollaries.

A path P on C is wh-induced if there exists no edge zy € E(H)\
E(C), z,y € V(P). For distinct vertices u,v (resp. u,v,w) on C, we
say that (H,u,v) (resp. (H,u,v,w)) satisfies condition W1 (resp. W2)
if the two u,v-paths (resp. the u,v—, v,w— and w,u-path) on C are
wh-induced. Note that according to our definition (H,u,v) satisfies
W1 if and only if (H,u,v,w) satisfies W2 for every vertex w on C.

LEMMA 4 (H.WHITNEY). Let H be a triangulated circuit graph
without separating triangles and let C be its outer cycle. Finally lct u
and v be two distinct vertices on C. If (H,u,v) satisfies the condition
W1 or if (H,u,v,w) satisfies W2 for some vertex w on C, then H
contains a Hamiltonian u, v-path.

Proof. See in [8]. O

LEMMA 5. Let H be a 3-connected triangulated circuit graph with-
out separating triangles and let C be its outer cycle with |V(C)| > 4.

(1) Let y € V(C), and let u,v be the vertices adjacent to y on C.
Then there exists a Hamiltonian u,v-path in H — y.

(2) Let yy' € E(C) and let u (resp. v) be the vertex adjacent to y
(resp. y') on C such that u # y' and v # y. Then there exists
a Hamiltonian u,v-path in H — {y,y'}.

Proof. (1)Set H' := H —y. Then H' clearly is a triangulated circuit
graph, because it is 2-connected. Let J be the outer cycle of H' and
let J; and J; be the u,v-paths on J with J; = C — y. Then the
vertices of Jo are identical to the vertices adjacent to y in H since H
is triangulated. Note that J; is wh-induced. We will show J, also is
wh-induced.

Suppose that there is an edge zz' in E(H)\E(J;) contained in the
interior of J. Then the vertices {z,z',y} separate H in two com-
ponents, and hence H contains a separating triangle since zz',z'y €
E(H). So we have a contradiction to the hypothesis of this lemma.

Therefore (H',u,v) satisfies W1, and so H' = H — y contains a
Hamiltonian u,v-path, by the Whitney’s lemma.



280 Hwan-Ok Jung

(2) From yy' € V(C) and |V(C)| = 4, H' := H — {y,y'} is 2-
connected, and from this it is a triangulated circuit graph. Let J be
the outer cycle of H', and let J; and J; be the u,v-paths on J such
that J; = C — {y,y'}. Then we have V(J;) = Ng({y,y'}). We first
note that J; is wh-induced. Let us consider the path J3.

Since H' is triangulated we can easily verify that there exists a u,v-
path Jj such that

() V(34) € V(J2),
(ii) J4 is induced path if |V(C)| > 5,
and J3 U {uv} is induced cycle if [V(C)| = 4.

If V(J3) = V(J2), then J; is wh-induced, and so (H',u,v) satisfies
Wi,

Now assume that V(J3) C V(J;2). From the fact H contains no
separating triangles, it is easy to see that there exists only one edge
e € E(H) such that e € E(J;)\E(J2). Let w be the vertex of J, such
that {y,y’,w} constitutes a facial cycle of H. Then, as in the proof
of (1), it can be verified that the u,w— and v, w-path on J; are wh-
induced. Therefore (H',u,v,w) satisfies W2, and hence, in both cases,
we can find a Hamiltonian «,v-path in H' = H — {y, y’} by Whitney’s
lemma. O

LEMMA 6. Let H be a triangulated circuit graph without separating
‘triangles and let C be its outer cycle. Let u,v € V(C),u # v, and
e € E(C) arbitrary (but e # uv if uwv € E(C)). If (H,u,v) satisfies the
condition W1, then H has a Hamiltonian u,v-path which contains the
edge e.

Proof. Let e := zy € E(C) and let w be a further vertex not in H.
We construct a graph H as follows:

V(H):=V(H)U{w} E(H):=E(H)U {zw,yw}.

Then H again is triangulated and (H,u,v,w) further satisfies W2, and
hence there exists a Hamiltonian u, v-path P in A by Whitney’s lemma.
Let V(P) := V(P)\{w} and E(P) := E(P)U {zy}\{zw,yw}. Since P
must contain the edge zw and yw, the u,v-path P is Hamiltonian in
H containing the edge e = zy. [
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4. Proof of the main theorem

Let R be a normal (C,C')-ring in a 4-connected infinite strong tri-
angulation G. We choose an arbitrary vertex yo in V(C'). Let §
be the first vertex adjacent to yp on C', counterclockwise, and set
M := Ng(§) N V(C). We note that M is non-empty since G is maxi-
mal planar. Let z; be the first vertex in M, also counterclockwise, and
{z1,...,2x} € V(C)N Ng(C"). (i.e. for every i € {1,...,m}, there
exists a vertex y € V(C') with z;y € E(G), and conversely). Then
for every i € {1,...,m} and for each pair {z;,z;;1} we can find ex-
actly one chamber L; such that z;, 2,41 € V(L;). Let zq be the vertex
adjacent to z,, on C lying between z,, and z¢. (If znzy € E(C) we
let zg = z;). We will prove there exists a Hamiltonian zg, yo-path in

R—(V(C)\ {yo}).

(1) The chamber Li(i =1,...,m - 1).

Case 1: L; is of type 1:

Let y € V(L;)NV(C"). If L; is empty we let P; := {z;,Z;41}. Oth-
erwise L; clearly is a 3-connected triangulated circuit graph without
separating triangles. Since z; and z;y; are adjacent to y on the outer
cycle of L; we can find a Hamiltonian z;,z;4;-path P; in L; — y by
lemma 5 (1).

Case 2: L; is of type 2:

Let y,y' € V(L;) N V(C"). Since R is normal, yy' must be an edge
of L;. Analogously it can be verified that L; satisfies the hypothesis of
(2) in lemma 5. Therefore we can also find a Hamiltonian z;, z;4;-path
Piin L; - {y,y'}.

(2) The chamber L,,.

Let J be the outer cycle of L,,. Because of the choice of z;, it is
clear that yoz,,yz; € E(G). We will construct a Hamiltonian z,, yo-
path P in L,, (resp. L,, — §) containing the edge z,z¢ if L,, is of
type 1 (resp. type 2), where the vertex z, is defined at the beginning
of this section.

Case 1: L,, is of type 1:

Let V(L) N V(C") =: {yo}. If L, is empty, then we let P =
Lm — {z1yo}. Otherwise Ly, is 3-connected and |V(J)| > 4. Because
Z1Y0 # TmTo, Lm satisfies the hypothesis of lemma 5 (corresponding
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to the vertices z1,yo a.n(i the edge zmzo). Therefore there exists a
Hamiltonian 24, yo-path P in L,, containing the edge z,zo.

Case 2: L, is of type 2:

Let V(Ln) N V(C') =: {yo,7}. In this case L, is not empty, so it
is 3-connected. As in the proof of lemma 5, (L, — §,1,Yy0) satisfies
the condition W1, so, by Whitney’s lemma, there exists a Hamiltonian
zy,yo-path P in L, — § containing the edge =,z

In ead1_case we let Py be the zg,z,-path of P and P,, be the 21, Tpn-
path of P. Then V(Po) U V(Pr) = V(P) and E(Po) U E(Pr) =
E(P)\{zmzo} since P contains the edge =, zg.

Now we summerize all chambers Li,...,L,,—1,L,,. For a given
normal (C, C')-ring R in G and for an arbitrary given vertex yo on C',
the chambers Lj,..., Ly, are fixed. From (1) and (2) we have m + 1
paths Py, Py,..., Py, in R, such that:

(1) for i =0,...,m —1 the endvertices of P; are z; and z;41, and
those of P, are z,, and yo.

(2) V(P)=V(Li—C")fori=0,...,m—1, and V(P)UV(Pp) =
V(L)

Let P := |Ji~, P;. Then P is a g, yo-path in R which covers all vertices
of (R— C")U {yo}. Thus we have:

PROPOSITION 7. Let R be a normal (C,C')-ring in a 4-connected
infinite strong triangulation and let =, yo be the vertices defined at the
beginning of this section. Then there exists a g, yo-path in R which
covers all vertices of (R~ C')U {yo}. O

We can now prove the main theorem of this paper with the aid of
Koénig’s lemma.

Let G be a 4-connected infinite strong triangulation and z, an arbi-
trary given vertex of G. We let Cy be the induced cycle of G consisting
of the vertices adjacent to zo. Then, by proposition 3, we have a
sequence of induced cycles {Cy, C1,C>,. .. } satisfying the same condi-
tions (1)~(2) in the proposition.

For 3 € N, let R; be the (Cj_1,C;)-ring and let P; be the set of all
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paths in R; such that:

t) Pis az,y-path in R;
PecP; if and only if with z € V(C;-1) and y € V(Cj),
ii) E(P) = E(R, — C;) U {y).

We will further define a relation R C P x P, where P := U;’il P;:

N o .
(P,P')€ R if and only if { D EN; PeP;and P& P,
iz) P and P’ have a common endvertex.
We will show that the relation R holds the hypothesis of Konig’s
lemma. Clearly we have P; # 0 and |P;| < oo for all j € N. For
any j € N, let P! € P;;; be an arbitrary element. Then, by the
definition of P’, one of its endvertices of P’, say z’', is contained in
C; and the another in Cj4;. By proposition 7, we can find a z,z'-
path P in R; with z € V(C;_;) and V(P) = V(R; -~ C;) U {z'},
and from this we have P € P; and (P, P’) € R. Thus, by Konig’s
lemma, there exists an infinite sequence of paths {P;,P,,...} such
that P; € P; and (Pj, Pj11) € R for all j € N. We now let z; be the
endvertex of P; lying on Cy and set Py := {zoz;}. Then P := U;’io P;
clearly is a one-side infinite path in G. Because of V(G) = {zo} U
V(Uj2, Fj) = V(U2 C;) by proposition 3, P is a Hamiltonian path
in G originating from the endvertex zo, and this completes the proof
of the main theorem.
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