• 제목/요약/키워드: hamiltonian

검색결과 272건 처리시간 0.037초

Orbital Quantum Bit in Si Quantum Dots

  • 안도열;오정현;황성우
    • Progress in Superconductivity
    • /
    • 제8권1호
    • /
    • pp.16-21
    • /
    • 2006
  • In this paper, current status of experimental and theoretical work on quantum bits based on the semiconductor quantum dots in the University of Seoul will be presented. A new proposal utilizing the multi-valley quantum state transitions in a Si quantum dot as a possible candidate for a quantum bit with a long decoherence time will be also given. Qubits are the multi-valley symmetric and anti-symmetric orbitals. Evolution of these orbitals is controlled by an external electric field, which turns on and off the inter-valley interactions. Initialization is achieved by turning on the inter-valley Hamiltonian to let the system settle down to the symmetric orbital state. Estimates of the decoherence time is made for the longitudinal acoustic phonon process.

  • PDF

정상 상태 내부 유동이 있는 양단 고정 곡선 파이프의 비선형 진동 특성 (Nonlinear Vibration Characteristics of a Curved Pipe with Fixed Ends and Steady Internal Flow)

  • 이수일;정진태
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.61-66
    • /
    • 2002
  • The nonlinear differential equations of motion of a fluid conveying curved pipe are derived by use of Hamiltonian approach. The extensible dynamics of curled pipe is based on the Euler-Bernoulli beam theory. Some significant differences between linear and nonlinear equations and the dynamic characteristics are discussed. Generally, it can be shown that the natural frequencies in curved pipes are changed with flow velocity. Linearized natural frequencies of nonlinear equations are slightly different from those of linear equations.

Pseudo-electromagnetism in graphene

  • Son, Young-Woo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.11-11
    • /
    • 2011
  • In this talk, I will discuss roles of pseudo vector and scalar potential in changing physical properties of graphene systems. First, graphene under small uniaxial strain is shown to be described by the generalized Weyl's Hamiltonian with inclusion of pseudo vector and scalar potential simultaneously [1]. Thus, strained graphene is predicted to exhibit velocity anisotropy as well as work function enhancement without any gap. Second, if homogeneous strains with different strengths are applied to each layer of bilayer graphene, transverse electric fields across the two layers can be generated without any external electronic sources, thereby opening an energy gap [2]. This phenomenon is made possible by generation of inequivalent pseudo scalar potentials in the two graphene layers. Third, when very tiny lateral interlayer shift occurs in bilayer graphene, the Fermi surfaces of the system are shown to undergo Lifshitz transition [3]. We will show that this unexpected hypersensitive electronic topological transition is caused by a unique interplay between the effective non-Abelian vector potential generated by sliding motions and Berry's phases associated with massless Dirac electrons.

  • PDF

The theory of non-Markovian optical gain in excited semiconductors

  • Ahn, Doyeol
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1995년도 광학 및 양자전자학 워크샵 논문집
    • /
    • pp.138-148
    • /
    • 1995
  • A reduced description of the dynamics of carriers in excited semiconductors is presented. Fristly, a time-convolutionless equation of motion for the reduced density operator is derved from the microscopic Liouville wquation operator method. Secondly, the quantum kinetic equations for intercting electron-hole parirs near band-edge in semiconductors under an extermal optical field are obtained from the equation of motion for the reduced density operator. The non-Markovian optical gain of a driven semiconductor is derived including the many-body effects. plasma screening and excitinic effects are taken into account using as effective Hamiltonian in the time-dependent Hartree-Fock approximation. it is shown that the line shape of optical-gain spectra gain is enhanced by the exicitonic effects caused by the attrative electron-hole Coulomb interaction and the interference effects (renormalized memory effects) between the extermal driving filed and the intermal driving Filed and the stochastic reservoir of the system.

  • PDF

External Feedback Effects on the Relative Intensity Noise Characteristics of InAIGaN Blue Laser Diodes

  • Cho Hyung-Uk;Yi Jong-Chang
    • Journal of the Optical Society of Korea
    • /
    • 제10권2호
    • /
    • pp.86-90
    • /
    • 2006
  • The external feedback effect on the relative intensity noise (RIN) characteristics of blue InAlGaN laser diode has been analyzed taking into account the spontaneous emission noise and the injection current for the high frequency modulation. A Langevin diffusion model was exploited to characterize its relative intensity noise. The simulation parameters were quantitatively evaluated from the optical gain properties of the InAlGaN multiple quantum well active regions by using the multiband Hamiltonian for the strained wurtzite crystals. The extracted parameters were then applied to the rate equations taking into account the external feedback and the high frequency modulation current. The RIN characteristics were investigated to optimize the low frequency laser diode noise characteristics.

A PSPICE Circuit Modeling of Strained AlGaInN Laser Diode Based on the Multilevel Rate Equations

  • Lim, Dong-Wook;Cho, Hyung-Uk;Sung, Hyuk-Kee;Yi, Jong-Chang;Jhon, Young-Min
    • Journal of the Optical Society of Korea
    • /
    • 제13권3호
    • /
    • pp.386-391
    • /
    • 2009
  • PSPICE circuit parameters of the blue laser diodes grown on wurtzite AlGaInN multiple quantum well structures were extracted directly from the three level rate equations. The relevant optical gain parameters were separately calculated from the self-consistent multiband Hamiltonian. The resulting equivalent circuit model for a blue laser diode was schematically presented, and its modulation characteristics, including the pulse response and the frequency response, have been demonstrated by using a conventional PSPICE.

분자동역학을 이용한 나노 와이어의 역학적 거동 해석 (Analysis of Mechanical Behavior of Nanowire by Molecular Dynamics Simulation)

  • 이병용;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.433-438
    • /
    • 2007
  • Mechanical behavior of copper Nanowire is investigated, An FCC Nanowire model composed of 1,408 atoms is used for NID simulation, Simulations are performed within NVT ensemble setting without periodic boundary conditions, Nose-Poincare MD algorithm is employed to guarantee preservation of Hamiltonian. Numerical tensile tests are carried out with constant strain rate, Stress-strain curve is constructed from the calculated Cauchy stresses and specified strain values, Non-linear behavior appears around $\varepsilon$=0.064, At this instance, starting of structural reorientations are observed.

  • PDF

완경사 방정식의 확장에 관한 연구 (A Study on the Extension of Mild Slope Equation)

  • 천제호;김재중;윤항묵
    • 한국해양공학회지
    • /
    • 제18권2호
    • /
    • pp.18-24
    • /
    • 2004
  • In this study, the Mild slope equation is extended to both rapidly varying topography and nonlinear waves, using the Hamiltonian principle. It is shown that this equation is equivalent to the modified mild-slope equation (Kirby and Misra, 1998) for small amplitude wave, and it is the same form with the nonlinear mild-slope equation (Isobe, 1994) for slowly varying bottom topography. Comparing its numerical solutions with the results of some hydraulic experiments, there is good agreement between them.

연성 결합 시스템에서의 저차 $H^{\infty}$ 최적 칼만 필터 설계 (Reduced-Order $H^{\infty}$ Optimal Kalman Filtering for Weakly Coupled Systems)

  • 조장휘;김범수;임묘택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2311-2313
    • /
    • 2000
  • In this paper, we consider $H^{\infty}$ optimal Kalman filter problems for linear weakly coupled stochastic systems. We introduce a decomposition for the systems of the Hamiltonian form, which plays an important role of exclusion of ill-condition by ${\varepsilon}$-effect and the parallel computation possibility. It is shown that the algebraic Riccati equation of the weakly coupled $H^{\infty}$ optimal Kalman filter problem is decoupled into completely independent reduced-order, well-defined, two suboptimal Kalman filters.

  • PDF

근의 이동범위를 고려한 LQR 제어기 설계 (Design of an LQR Controller Considering Pole's Moving-Range)

  • 박민호;홍석교;이상혁
    • 제어로봇시스템학회논문지
    • /
    • 제11권10호
    • /
    • pp.864-869
    • /
    • 2005
  • This paper proposes a new method for LQR controller design. It is unsystematic and difficult to design an LQR controller by trial and error. The proposed method is capable of systematically calculating weighting matrices for desired pole(s) by the pole's moving-range in S-plane and the relational equation between closed-loop pole(s) and weighting matrices. This will provide much-needed functionality to apply LQR controller. The example shows the feasibility of the proposed method.