Abstract
The nonlinear differential equations of motion of a fluid conveying curved pipe are derived by use of Hamiltonian approach. The extensible dynamics of curled pipe is based on the Euler-Bernoulli beam theory. Some significant differences between linear and nonlinear equations and the dynamic characteristics are discussed. Generally, it can be shown that the natural frequencies in curved pipes are changed with flow velocity. Linearized natural frequencies of nonlinear equations are slightly different from those of linear equations.