• Title/Summary/Keyword: hamiltonian

Search Result 270, Processing Time 0.025 seconds

Effect of local field on atomic systems I : Derivation of interaction hamiltonian in electric dipole systems (국소장이 원자계에 미치는 영향에 대한 이론 I : 전기 쌍극자계에서의 상호작용 해밀토니안의 유도)

  • 안성혁
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • We define the basic minimal coupling Hamiltonian of the atomic systems in the Coulomb guage and show that this Hamiltonian yields the correct equations of motion for the operators of interest. Using the unitary transformation and making the dipole approximation, we calculate the effect of polarization of the dipoles on the interaction Hamiltonian of the system. ystem.

  • PDF

A Hamiltonian Property of Pyramid Graphs (피라미드 그래프의 헤밀톤 특성)

  • Chang Jung-Hwan
    • The KIPS Transactions:PartA
    • /
    • v.13A no.3 s.100
    • /
    • pp.253-260
    • /
    • 2006
  • In this paper, we analyze the Hamiltonian property of Pyramid graphs. We prove that it is always possible to construct a Hamiltonian cycle of length $(4^N-1)/3$ by applying the proposed algorithm to construct series of cycle expansion operations into two adjacent cycles in the Pyramid graph of height N.

HAMILTONICITY OF QUASI-RANDOM GRAPHS

  • Lee, Tae Keug;Lee, Changwoo
    • Korean Journal of Mathematics
    • /
    • v.10 no.1
    • /
    • pp.29-35
    • /
    • 2002
  • It is well known that a random graph $G_{1/2}(n)$ is Hamiltonian almost surely. In this paper, we show that every quasirandom graph $G(n)$ with minimum degree $(1+o(1))n/2$ is also Hamiltonian.

  • PDF

PERIODIC SOLUTIONS FOR THE NONLINEAR HAMILTONIAN SYSTEMS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.331-340
    • /
    • 2009
  • We show the existence of nonconstant periodic solution for the nonlinear Hamiltonian systems with some nonlinearity. We approach the variational method. We use the critical point theory and the variational linking theory for strongly indefinite functional.

  • PDF

Stability of Explicit Symplectic Partitioned Runge-Kutta Methods

  • Koto, Toshiyuki;Song, Eunjee
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • A numerical method for solving Hamiltonian equations is said to be symplectic if it preserves the symplectic structure associated with the equations. Various symplectic methods are widely used in many fields of science and technology. A symplectic method preserves an approximate Hamiltonian perturbed from the original Hamiltonian. It theoretically supports the effectiveness of symplectic methods for long-term integration. Although it is also related to long-term integration, numerical stability of symplectic methods have received little attention. In this paper, we consider explicit symplectic methods defined for Hamiltonian equations with Hamiltonians of the special form, and study their numerical stability using the harmonic oscillator as a test equation. We propose a new stability criterion and clarify the stability of some existing methods that are visually based on the criterion. We also derive a new method that is better than the existing methods with respect to a Courant-Friedrichs-Lewy condition for hyperbolic equations; this new method is tested through a numerical experiment with a nonlinear wave equation.

Comparison of ab initio Effective Valence Shell Hamiltonian with Semiempirical Theories of Valence: Pairing Theorem

  • Sun, Ho-Sung;Kim, Un-Sik;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.3
    • /
    • pp.168-170
    • /
    • 1985
  • The pairing properties of electronic structure are investigated from ab initioists' point of view. Numerical results of exact ab initio effective valence shell Hamiltonian are compared with simple semiempirical Hamiltonian calculations. In the oxygen atom case it was found that effective three-electron interaction terms break the similarity between electron-states and hole-states. With the trans-butadiene as an example the pairing theorem was studied. Even for alternant hydrocarbons, the deviation from the pairing was found to be enormous. The pairing theorem, which is usually stated for semiempirical Hamiltonians, is not valid when the exact effective Hamiltonian is considered. The present study indicates that comparisons between the pairing theorem of semiempirical methods and ab initio effective Hamiltonian give important information on the accuracy of semiempirical methods.

BINDING NUMBER AND HAMILTONIAN (g, f)-FACTORS IN GRAPHS

  • Cai, Jiansheng;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.383-388
    • /
    • 2007
  • A (g, f)-factor F of a graph G is Called a Hamiltonian (g, f)-factor if F contains a Hamiltonian cycle. The binding number of G is defined by $bind(G)\;=\;{min}\;\{\;{\frac{{\mid}N_GX{\mid}}{{\mid}X{\mid}}}\;{\mid}\;{\emptyset}\;{\neq}\;X\;{\subset}\;V(G)},\;{N_G(X)\;{\neq}\;V(G)}\;\}$. Let G be a connected graph, and let a and b be integers such that $4\;{\leq}\;a\;<\;b$. Let g, f be positive integer-valued functions defined on V(G) such that $a\;{\leq}\;g(x)\;<\;f(x)\;{\leq}\;b$ for every $x\;{\in}\;V(G)$. In this paper, it is proved that if $bind(G)\;{\geq}\;{\frac{(a+b-5)(n-1)}{(a-2)n-3(a+b-5)},}\;{\nu}(G)\;{\geq}\;{\frac{(a+b-5)^2}{a-2}}$ and for any nonempty independent subset X of V(G), ${\mid}\;N_{G}(X)\;{\mid}\;{\geq}\;{\frac{(b-3)n+(2a+2b-9){\mid}X{\mid}}{a+b-5}}$, then G has a Hamiltonian (g, f)-factor.

On the Dynamics of Multi-Dimensional Lotka-Volterra Equations

  • Abe, Jun;Matsuoka, Taiju;Kunimatsu, Noboru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1623-1628
    • /
    • 2004
  • In the 3-dimensional cyclic Lotka-Volterra equations, we show the solution on the invariant hyperplane. In addition, we show the existence of the invariant hyperplane by the center manifold theorem under the some conditions. With this result, we can lead the hyperplane of the n-dimensional cyclic Lotka-Volterra equaions. In other section, we study the 3- or 4-dimensional Hamiltonian Lotka-Volterra equations which satisfy the Jacobi identity. We analyze the solution of the Hamiltonian Lotka- Volterra equations with the functions called the split Liapunov functions by [4], [5] since they provide the Liapunov functions for each region separated by the invariant hyperplane. In the cyclic Lotka-Volterra equations, the role of the Liapunov functions is the same in the odd and even dimension. However, in the Hamiltonian Lotka-Volterra equations, we can show the difference of the role of the Liapunov function between the odd and the even dimension by the numerical calculation. In this paper, we regard the invariant hyperplane as the important item to analyze the motion of Lotka-Volterra equations and occur the chaotic orbit. Furtheremore, an example of the asymptoticaly stable and stable solution of the 3-dimensional cyclic Lotka-Volterra equations, 3- and 4-dimensional Hamiltonian equations are shown.

  • PDF