J. Appl. Math. & Informatics Vol. 28(2010), No. 3 - 4, pp. 553 - 568
Website: http://www.kcam.biz

APPLICATION OF PSEUDO Z, INDEX THEORY TO
PERIODIC SOLUTIONS WITH MINIMAL PERIOD FOR
DISCRETE HAMILTONIAN SYSTEMS
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ABSTRACT. By making use of minimax theory and pseudo Z;, index theory,
some results on the existence and multiplicity of periodic solutions with
minimal period to nonconvex superquadratic discrete Hamiltonian systems
are obtained.
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1. Introduction

In this paper, we shall define a new pseudo Z, index theory and, as appli-
cations, give some existence and multiplicity results for a class of nonconvex
superquadratic discrete Hamiltonian systems. Precisely, for any given integer
p > 1, consider the problem

JAz(n) = b(n)H'(Lz(n)) (1)
where z(n) = ( ;;EZ% ) ,Lz(n) = ( -’1713(:21(:)1) ) ,r1,22 € RY, and Az;(n) =
zi(n + 1) — z;(n), i = 1,2, is the forward difference operator. J is the standard

0 In

symplectic matrix J = ( where I is the identity on RY and N is

—-In 0
a positive integer. H(z) € C1(R?*Y R) and b(t) € C(R,R") is periodic with
minimal period T, here T is a given positive integer.

(1) can be regarded as a discrete analogue of
Jz'(t) = b(t)H'(z(t)). (2)

As to (2), it is a classical Hamiltonian system and play an important pole in the
study of modern physics, dynamics systems, astrophysics, nuclear physics and

Reccived October 24, 2009, Revised November 3. 2009, Accepted December 5. 2009,
© 2010 Korean SIGCAN and KSCANM .

553



554 Long Yuhua

chemically reacting systems, etc.; see, for example [3, 4]. Classically, pT-periodic
solutions for (2) are called subharmonic solutions. Concerning the existence of
subharmonic solutions with minimal periods of (2) has a long and prestigious
history, the first result should go back to [1] (see also [2] for a different proof).
P.H.Rabinowitz gave a conjecture that the Hamiltonian systems had nonconstant
solutions with prescribed minimal period under his given conditions in 19781,
After then, many out-standing researchers all-around the world such as Arnold,
Morser, Ambrosetti, Rabinowitz, Eklend, Benci, Chang K.C, Long Y.M., ect.,
devoted themselves to the problem and made great progress on it, we read [2, 6,
7,8, 9, 10, 12] for detail. (1) is the best approximations of (2) when one lets the
step size not be equal to 1 but the variable’s step size go to zero, so the solutions
of (1) can give some desirable numerical features for (2).

(1) may arise from various fields such as electrical circuit analysis, matrix the-
ory, control theory and discrete variational theory etc, see for example [13, 14].
At the same time, we also find that difference equations are closely related to
differential equations in the sense that (i) a differential equation model is usually
derived from a difference equation, and (ii) numerical solutions of a differen-
tial equation have to be obtained by discretizing the differential equation (thus
resulting in difference equations). Therefore, it is of practical importance and
mathematical significance to consider the existence and multiplicity of minimal
periodic solutions of (1).

It is well-known that with the sharp development of difference equations, there
are many excellent works have achieved in the past decade. Write VH (n, z(n)) =
b(n)H'(xz(n)), concerning the subharmonic solutions for (1), Guo and Yu [18]
obtained some existence and multiplicity results by Z> index theory and linking
theorem when (1) are superquadratic Hamiltonian systems. In [19], when H
is subquadratic at infinity, the authors gave some existence results of periodic
solutions. Recently, [20] studied (1) with forced term, i.e.

—JAz(n) + VH(n,z(n)) = f(n)
fi(n)

where f(n) = ( Fa(n) ), by perturbation technique and dual least action prin-
ciple, and gave some existence results of periodic solutions. However, as known
to us, it seems that no similar results in the literature on the existence and the
multiplicity of subharmonic solutions with minimal period of (1) have been ob-
tained, because there are few known techniques for studying the multiplicity of
minimal period problem of discrete systems. In view of this, the main purpose
of this paper is to look for a new approach to study the multiplicity of periodic
solutions with minimal periods for (1) by using geometrical theory and critical
point theory.

Denote = = (z],23)7, H(z) = H(x1,2). We need following assumptions:
Assumption 1. For all z € R*N, H(z) > ao|x|5, where constants ag > 0 and
g > 2.

Assumption 2. GH(z) < (x, H'(x)), Vo € R*V.
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Assumption 3. |H'(z)| < a1|x|ﬁ_1, Vz € R2¥ | where constant a; > 0.
Assumption4. Ifz = z(n), H' (z(n)) both are periodic function with minimal
period ¢T', q is rational, then g is necessarily an integer.

Remark 5. By assumption 2, there exist constants by > 0, b > 0 such that
H(z) > bi|z|’ — b

holds for all € R?>Y. This means that H(z) satisfies superquadratic condition
at infinity.

For our convenience, let N, Z, R be the set of all natural numbers, integers, and
real numbers, respectively. Throughout this paper, without special statement,
M = max;c(o.7)b(t), m = minseo.7) b(t) > 0, | - | denotes the usual norm in RN
with N € N, (-, -) stands for the inner product, and -7 is the transpose of a matrix
or vector. For a,b € Z, define Z(a) = {a,a+ 1, -}, Z(a,b) = {a,a+1,---,b}
when a < b. Set s, = the smallest prime factor of p. :

2. Variational structure and some preparatory results

To apply minimax theory to study the existence of minimal period solutions
of (1), we shall establish a suitable structure and give some preparatory results,
which will be used in the proofs of our main results..

Let

S = {{z(n)}|z(n) = ( i;§Z§ ) eR* z;(n) eRN,j=1,2,n¢e Z}

be the vector space. For any given positive integers p, T, define the subspace E,r
of S as Epr = {z = {z(n)} € S|lz(n + pT) = z(n),n € Z} equipped with the
inner product
pT
(@Y Er =) o) (), Vo€ B, yE L,
i=1

and the norm

pT 2
”x”EpT = (Z lx(n)|2) ,VCB S EpT7
n=1

where (-,-) and |- | denote the usual inner product and norm of R?" respectively.
Then (E,r, (-,)) is a 2pT N-dimensional Hilbert space and is linearly homeomor-
phic to R**MT | For later use, we define another norm on (Eprs < -, >E,,) for
r > 1 by

pT ’l
lzlly = | X lz@)" ) . Vo€ Bpr.
j=1
Write |||/, = ||z]|. it is obviously that ||z|| = ||z||,, then there exist constants

¢» > ¢ > 0 such that ¢qf|z|,. < ||z|| L e2flz]],., Yz € Epr.



556 Long Yuhua

For all x € E,r, consider the functional 1

1 pT pT
I(z) = 3 Z(JA(LCF(’” —1)),z(n)) - Z b(n)H (Lz(n)), (3)
n=1 n=1
where Lz(n) = ( :Clé:(:;)l) ) It is easy to see that I(x) € C'(E,r,R) and
3:,318(1;&? 1) —Azy(n) 4+ b(n) - He, (x1(n + 1), 22(n)), Vn € [1,pT],
(‘96;2(2) = Azi(n) +b(n) - Hy,(x1(n + 1), z2(n)), VYn € [1,pT].

Then it follows I’(z) = 0 holds if and only if when n € [1, pT7,
{ Aza(n) = b(n) - Hy, (x1(n + 1), z2(n))
Azqi(n) = =b(n) - Hy,(z1(n + 1), 22(n))
that is, JAz(n) = b(n)H'(Lz(n)), this is just (1). Hence, critical points x of
I(z) on E,r are corresponding to pT-periodic solutions z(n) of (1).
Next we consider the eigenvalue problem
JA(Lz(n — 1)) = Az(n) z(n + pT) = z(n). (4)
(4) can be reformed as
z1(n+1) = (1 = A?)z1(n) — Az2(n)
z2(n + 1) = Az1(n) + x2(n)
z1(n +pT) = z1(n),z2(n + pT) = x2(n)
that is
(1=M)In —Ay zi(n) ) _ { z1(n+1) _

( M In ro(n) ) = \ za(n+1) ,z(n+pT) = z(n).
(1= Ay =My
M N In
z(n+1) = A(A) - z(n) z(n+ pT) = z(n). (5)

Let u(n) = v"¢c, where ¢ € R?" and ¢ # 0, be the corresponding eigenvector to
the eigenvalue problem of (4), then u(n) satisfies (5), hence ve = A(\)c, vPT = 1.
By direct calculation, we have

Denote A(\) = < ), then (4) can be expressed by

v = e2km/PT N = 2sinEI ke [-pT+ 1,pT — 1]
_ pT
because of [A(A\) — vIay| = 0 and vPT = 1. For any k € [—pT + 1,pT — 1], write
v = e2Fmi/PT N\, = 2sin ;j—;, peRVN.
Next we have discussion on the eigenvector u(n) according to the value of k.
case 1: k=0
Ao = 0 is a 2N multiple eigenvalue and uy(n) =vj -c=c € R>V,

case 2: k =+ and pT is even
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(i) k = 1’17 \4 2 is an N multiple eigenvalue, vpr = ™ = ~1, ¢ =
(7. pT)T € R*Y, upr (n) = (=1)" - (o7, p7)"

(22) k = 121 A ;72 = —2 is an N multiple eigenvalue, v_pr = e Fm = 1,
c= (pT.' —p ) R 1—2'1' (n) = (’—1)71 . (pT, —IOT)T.

case 3: k ¢ [—[2L o } —1JU L, [p—Tz_—l]], where [-] is the greatest integer func-
tion. vy satisfies (A(Ar) — vilan)e = 0, then A is a 2N multiple eigenvalue and

P

c=—if{ . —ikn/pT, |- Therefore uy(n) can be given by
. ; (BFn—3)i
o _ 21;'11'1 —1p e' pt 2P
u(n) =vy-c=eoT . ( e thm/pT ) ) ( o BFn—{F)i P ) '
From the above analysis, the space E,7 can be split as
Ex=WPY (6)
where W = span{up}, Y = span{uy, k = [%], [%] +1,---,-1,1,---, [?21]}
It follows that for any xz(n) € Y, we can write z(n) as
{%1 2km 2k
(n) = Z sin( =7 n) ak — cos( ek n)-b
T COS(QMT sm(%‘“ _ _%) bk ’
k=—[EL].k5#0

here ay, b, € RV.
For the convenience of the later discussion, we express any z(n) € Y as

& [ B, v
x(n)= Z 62pk¥‘rn Q_T}zg ) fAEC .

k
k=—[2L].k#£0

F

Lemma 6. For any x € E,r, it has

pT
Amazllzl < D (JA(La(n - 1)), 2(n)) < Amaaj2],

n=1

and if x €Y,

w}ZGT‘G Aynin — miﬂ{)\l, Tty 'pT_l} - 28111 Z")"'T, A'y'nax — m&X{/\l, tt )\pT.—l}.

Lemma 7. For any z(j) > 0,y(j) > 0,5 € [1,n],n € Z,
;

Sl < (S h ] [ Xvm]
j=1

=1 Jj=1

where r > 1.5 > 1,% + 1 =1.



558 Long Yuhua

Lemma 8. Foranyx €Y

pl B pT
S JA(Lz(n - 1)),2(n)) < (2sinp”—T) S |Azm)P.

Proof. For any x € Y, by Lemmas 6 and 7, we have

rT pT . % pT ) %
E(.]A(L.’l'(ll ~1)),2(n)) < (Z |JA(Lz(n — l))[2> : (Z };z*(-rz)iz)

n=1 n=1 n=1

-
o

n=1 rn==1

pT 1 pT .
< (Z IAzn(n)lz) . (QSin I}WT) . (Z ]A;r(n)]z>

pT

= (2sin ;)Ef)“l S |Ax(n)?.
n=1

O

From (3) and (6), we can draw a conclusion that if t =2 +y, € W,y €Y,

then I(z) = I(Z +y) = I(y) holds for any € E,r. Hence, we can study critical
points of I(refer to (3)) only on the subspace Y.

- 3. Pseudo Z, index theory

For the convenience of later discussion, we will recall the theory of Z, index
theory first, then state our pseudo Z, index theory. Z, index theory was estab-
lished in 1976 by Ekeland and Lasry. Michalek developed it in [16]. Here we use
the definition of Z, index given by Liu [17] in 1993.

Throughout this section, we fix p > 1 as a positive integer and write it as

p=pi'py P, (7)
where p; < p2 < --- < ps are prime factors of p, r; > 0 integers, j =1,2,---,s.

Let X be a Banach space and p be a linear isometric action of Z, on X,
where Z, is a cyclic group with order p. A subset of A of X will be called -
invariant if u(A) C A. A continuous map f : A — X is called p-equivariant if
fluz) = pf(x), for all z € A.

Set

Y ={A C X|Ais closed and u -invariant},
Fy={n€Nln=pi'p - -pl-t;€Zt; >0,j=1,2,---,5}
and

-
'r={zec31argz-—--;ﬂ, j=0,1,---,p—1}

For any n € F,, we define the index i, : £ — N U {400}, VA € ¥ as follows:
in(A) = min{k € N| there exists a continuous map

¥ A — YT\ {6}, such that U(uz) = ">/ P¥(x)}.
Set 7,()) = 0 and i, (A) = +20 if no such map ¥ exists, where ) stands for the
empty set.
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Definition 9. i, : ¥ — N U {+o00} defined above is a Z, index if the following
properties are true:

(1) 1,(A) =0 A =0;

(2) (monotonicity) if ¥ : A; — As is a continuous p-equivariant map, then
in(Al) < ’I,n(AQ), VA, Ay € 3

(3) (subadditivity) in(Aq U Ag) < in(Al) + in(AQ), VA, As € %

(4) (continuity) if A € ¥ is a compact set, then there exists 6 > 0 such that
Ns(A) € ¥ and i,(Ns(A)) = in(A), where Ns(A) = {z € X| dist (z, A) < 6}.

For any given u-equivariant functional g : X — R, we can establish a pseudo
Zp index. Suppose D = (a,b) is a finite interval and denote

®" (g) = {n: X = X|p — equivariant continuous homeomorphism satisfying
Nlg—1@\p) = id g-1(r\p), 9(n(z)) < g(z),Vz € X}.

Definition 10. (X*,i*) is a pseudo index of Z, index i related to H* = ®/,(g)
when i* : ¥* - N U {400} testifies |

(1)if Ae £*, Be Z and 7 € H* then ©* C X, A\B € Z*, n(A4) € &%

(2)if A C B, then i*(A) <i*(B), VA,B € ¥

(3)i*(A\B) > i*(A) —i(B), VA€ ©*,B € %;

(4)i* (n(A4)) > i*(A), VA€ £*,Vn € H*.

Lemma 11[15]. Let (3,7) be an index on X and S € ¥ be a given close set, if
i"(A) = inf )z'(,u(A) ns),

REDY (g
then (X,1*) is a pseudo index for any ®%(g).

The most important aspect of an index theory lies in the applications of its
dimensional property to estimate the critical point numbers of certain kinds of
functionals. In the following we will discuss the property of the Z, index i,

Let X5, is the p—invariant 2a-dimensional subspace of X, we identify X»,
with C*. A Z, action p on C* is given by

pz = (eik.127r/pzl’ . ,eikGQW/pza), (8)

for 2 = (21, -+, 2z4) € C%, where k; # 0 integers, j = 1,2, - ,a.

Let € be a bounded p—invariant domain in C® and 6 € €2, then the boundary
of the domain 0f2 is also a p—invariant set in X, that is, 92 € X. We are going to
estimate the index of 0€). For the given integer p defined in (7), we define M =
M'p!* ... pls is the greatest common divisor of {Im;]}9_; and m = m/p{* - - pls
is the smallest common multiple of {|m;|}{_;, where M', m' are relatively prime
to p. Write

m ¢ .
n= =Rl @

then n € F),.
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Theorem 12. If there exists some 3, 1 < 8 < s such that

a(tg —lg) <rg—lg, (10)
then i, (00) = 2a, where n = 2% = pi' ---p': is defined above.
Corollary 13. If (mj,p)=1,j=1,2,---,a, then i;(09) = 2a.

Now we give an example to calculate the index of the following p—invariant
set on the finite dimensional space Y by making use of theorem 12 and corollary
13.

Example. For given integers p > 1, T > 0, identify R?YN with CY by z =
(z1,z2, -+ ,22N) € R2Y with

: : - N
(1 +1TN+1, T2 + N2, , TN +iT2n) € CF.

A Z, action on Y is defined as pz(n) = z(n + T). For any integer j, |j| =
1,2,--- [pT 11, define a subspace

(_.Ln_

)i
Y; = {z(n)|z(n) = ( (Bzniz)i 52 ) £ e CVY,
J

Consider 2kN-dimensional subspace

: ! (HFn-5)i ¢
Y2kN=@Yj={x(n): ( (2izp .53 ), ijCN},
. pT . .

=1 ~[51.5#0

where 1 < k < pT — 1. Then for any z(n) € Yarn,

[%] (Zﬂ(n_{_T)_z)i
px(n) =z(n+T)= Z ( (2 (n4T)— 12 & | >
£],5#0 &

%l 2;;: n 27 5. g,
—J—n—i- 2]‘" )’L 5
3#0 J

T _5 . j . 61.21')77
_7" .L
;‘ T 1t T . éj
—[51.77#0

[5]

8( 21,773 n—% 7)1 €
Because of Xoin being identified with C*V by > (27, J

SIES

w[:"

wl?« wl:-

jm (B g0 \ €T
with ¢ = (¢1,¢,--+,C) € CFY, we get the representation of p on C*V as
p¢ = (e27/P¢y ... e?R/PCL). For p > 0, choose a set of Yain as
k .
Dicp = { € Yaunl 3 2sin ZlG1" = 77}, (11)
Jj=1

then I'; , bounds an invariant domain containing §. By theorem 12, we have
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Corollary 14. (a) If 1 < k <, then 11(I'y.,) = 2kN.
(b) Set m is the smallest common multiple of {|j|}}_,, i.e., m =m/ -p{* - - pls,
if there exists atz, 1 < B < s, such that kNtg < rg, then i,(I'y.,) = 2kN, where

t te
n g pll .. -pS .
4. Main results and proofs

In Sect. 2, We turned the periodic solution problem of (1) to the corresponding
critical point problem of the functional (3). Next we will achieve a series of new
results on the existence and multiplicity of minimal period solutions of (1) by
combining minimax method in critical theory with the pseudo Z, index.

Recall any given positive integer p is expressed in (7). For integer ¢, 1 < q < p,
define

Qq = min{l|l|p, g < 1}, (12)
Clearly, when ¢ = 1, (); = s,. Define
K, = the smallest common multiple of {j|1 < j < Q, — 1}
= K'pliplp - ople, (13
where (K',p) =1 and t;(1 < j < s) are uniquely determined by q.

Our main results are following.

Theorem 15. Let H satisfy assumption 1-4. Given integersp, g, 1 < q < p, Qq
and K, are defined as (12) and (13) respectively satisfying

1
ao Msin £L 1\ 2
— 2| ———0x | (14)
ay B2msin =2 ’

if there exist some integers k (1 < k < pT —1) and t, (1 <~ < s) such that
kt,N <r, (15)

then (1) admits at least 2kN distinct solutions with minimal period pT/l, where
1 <1< q andlq. '
Without assumption 4, we have

Theorem 16. Let H satisfy assumption 1-3, then for any given integer p > 1

satisfying
1
T wlan 2T 2
a M sin T
— 2 . 7r
a, B?msin oF

there exist at least 2N distinct solutions with minimal period pT of (1).

Let ¢ = 1, then it follows QQ; = s, by the definition of @,. So the condition
(14) in theorem 15 can be turned into
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M sin ‘
29 > <___JT_) : (16)‘

2
(3?msin T

IS

since (Kg,p) =1, then t; =0 for all j = 1,2,---,s, hence the condition (15) in
theorem 15 is also true. It follows.

Corollary 17. Let H satisfy assumption 1-4. For any given integer p > 1, if
(16) holds for some integer 1 < k < [Pg:], then (1) admits at least 2kN distinct
solutions with minimal period pT .

In order to give the proof of theorem 15, we will state some propositions and
lemmas at first.
For a positive integer f, define

3

s A 3—2

B—2 2ap8sin %
1

Proposition 18. Under assumptions 1-3, we have

(@) the functional I is bounded from below and I(xz) > By, Vz €Y

(b) if I(x) < Bs, the z(n) has minimal period pT; and further if we add
assumption 4, there holds.

(c) if z is a critical point of I and

I(z) < By, for some positive integer f (18)

then z(n) has minimal period pT'/l, for certain | where ! < f and is a factor of
p.

Remark 19. It is easy to see that I(z) > 0 for any z € Y by (a). Then
we can draw a conclusion that there exists a sufficient small py > 0 such that
infzes, ny I(x) > cg > 0 where S, = {z € Yllle < p} and ¢g is a constant only
related to 00-

Remark 20. It follows from (c) of proposition 4.1, if z is a critical point of I
and I(z) < Bs,, then the solution of (1.1) related to x has minimal period pT.
Proof of Proposition 18 Suppose x € Y with period pT'/l, where [ is a positive
integer and [|p.
Write
M, = max {|Lz(n)|""?}, ne[l1,pT],

by assumptions 1-3, we have

pT pT
B> b(n)H(Lx(n)) = > b(n)BH(Lz(n))
n=1 n=1

pT

> b(n) < La(n), VH(Lz(n)) >

n=1

IN
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= pz: < Lx(n), JAz(n) >

n=1

-1
< (2sin ;—’;) |Az(n)] - Az (n)]

l —1
- (2sinp—§) Az (n)|?

N 2
= (QSlnﬁ) |6(n)V H(Lz(n))l

IA

1 pT
(2sin %) MO | Lao(n)[2P2

~1
QSinl—W) ca?- M, M- Z ) - |Lz(n |]

IA

N
S
=,
5
i

SUSVSYS Z[(b(n))? [H(Lz(n))).
n=1

That is,

-1

= N

pT
ﬁz mH(La(n) < (2sin7) FRLRID Y CORECEON)

Qo

2 sin
so we get M, < a—Oﬁg;\II— From assumption 1, it follows that

8
2a00sin & T ) B=2
)

r\n 0,°.’17?'L'6 a
H(Lz(n)) > ao - |La(n)® > ( i

making use of assumption 2, there exists

pT pT
83 b(n)H(La(n) < Y (JA(La(n - 1)), 2(n),

n=1 n=1

hence

I(z) = %Z(JA(Lx(n ), z(n)) Zb(n )H(Lz(n))

v

O b H(La(n)) - Y blm)H(Lz(n)

_9 2a0f3sin &\ P2

a?M

Because of 3 > 2, we have (a) and (b) are true.
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(c) To prove (c), assume that z(n) has minimal period pT'/l for some integer
[ > 1. From above and (18), we have ! < f. Since z is a critical point of I, then for
some p € R?Y, 2(n) = z(n) + p € H'(Lz(n)) satisfies JAz(n) = b(n)H'(Lz(n))
and has minimal period pT'/l. By assumption 4, p/l is an integer, that is [ is a
factor of p. The proof of proposition 4.1 is complete. ad

Lemma 21[15]. The functional g € CY(X,R) is T(G)-invariant and satisfies
PS condition. Suppose (X*,i*) be a pseudo index related to the T(G) index i of
% (g) and

c;=inf sup f(z), j=12,--,
i*(A)>j.zcA

where A C X, A C ¥*. There have
(1) if c; € D, then cj is a critical value of g;
(2) if there exists an integer v € N such that

c=Cyt1=-=cy €D, [>1,
then 1(K.) > 1, here K. = {z € X; f'(z) =0, f(z) = c}.

In order to employ lemma 21 to produce multiple critical points for the func-
tional I, the following Z, version of the deformation lemma (see [17]) is needed.

Lemma 22. Let ¢ € CY(X,R) be a p-invariant functional satisfying the PS
condition. For any ¢ € R and any neighborhood U of K. = {z € X|¢(z) = ¢,

¢'(x) = 0}, there exists a constant € > 0 such that for any 0 < € < €, there is a
contznuous map n: [0,1] x X — X such that

(a)n(0,z) =z, VreX;
O)n(t, ) ==z, V(t,z)€[0,1] X pe;
gc)ﬂ(l T) € pe—ey, VT E Peye \U;

d)n is a Zp-equivariant homeomorphism.

A full statement and proof of the Z, deformation theorem can be found in
[5] with obvious modification. Here we only to prove I(x) satisfies Palais-Smale
(PS) condition.

Lemma 23. Under assumption 1-3, the functional I(x)(see (3)) defined on'Y
satisfies PS condition.

Proof. Suppose {z(*)} C Y, from proposition 18 we have I(z(*)) is bounded from
below, here we can suppose I(x(*)) be bounded from above, that is, there exists
a positive constant M, such that I(z(* )y < M;, Vk € N. From remark 5, lemma
6 and 8, we have



(4]
[or}
[o4]
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T

2y = %Z(]A(L:c”“)(n Zb H(Lz™(n))
n=1
S 251n )“ Zle(’”) | mZ(bﬂLx“‘ —bQ)
n=1
<22 )72 le® )] — mb iIL ®()|” + mbapT
<3 Slin razllz " (n mln:1 x\"(n mbap
_15 12 1B = mbe 2@ P+ mbonT
= 2( SmpT) maz [ ()" = mbi[|2* (n)][ 5 + mbap

According to the equivalence of ||z(*)(n)|| and ||z{*)(n)] 5, there exists a constant
C > 0 such that ||z (n)|| < C||:c(’°)(n)|-|ﬂ. So

2 T

: C 2 . 8
B « & o T =142 k)2 _ (k
I(z'%) < 5 (2sin pT) A2 | )||ﬁ mby |z (n) || 5 + +mbopT < M.

Since 8 > 2, there is a constant My > 0 such that ||z®)|| < My, Vk €
N. Then {z(*)} is a bounded subsequence in the finite dimensional space Y.
Obviously, {z¥)} possesses a convergent subsequence in Y. O

Lemma 24. If integer 1 <k < pT — 1, when x € Iy, there holds

<]

o) <7 (s ) (ﬂan())T%-(l—%) o

Proof. When z € I'y, ,, we have

I(z) = % Z(JA(LSC(” = 1)),2(n)) = ) b(n)H(La(n))

n=1

b T

< sin T nz lz(n)[> — Z b(n)H (Lz(n))
. km - | B\F 1-2 B

< sin T Z (|a:(n)| ) 1778 —m Z H|Lz(n)]

p - n=1 : n=1

k‘ﬂ' pT % pT _% pT
< sin T (Z |$(n)[ﬁ> . (Z 1) — apm Z |Lz(n) s

p n=1 n=1 n=1

5=2 km

= (T) 7 +sin — - ||all} — aomlz[|3

pT
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3—=2 .
We can write O(u) = (pT') 7 -sin %—7’1 ‘uj —aomug, when we denote ||z||; = u,
where u € (0, +00). Let ©'(u) = 0, we have

8-2 F=2
]

2sin %% - (pT)

Bmag

ug =

Since # > 2, then ©(u) — —oo when u — 400, thus ©(u) gets its maximum at
u = ug. Hence, '

2 B
8—2 B—2 3—2 3-2

sk = s R 222
3-2 krm 2sin 2% - (pT) P 2sin °% - (pT') 7
I < ; T 3 .al . p _ p
(z) < (D) St pT Bmao @0 Bmag

_B8__ _2
ke 77 [ 2 77 2
R T . 1= 2 O
ot (““pT) (ﬁmao) (1 ﬂ)

With the aid of above preparations, next we pay our attention to proving theorem
4.1.

Proof of Theorem 15: We are going to complete the proof by two steps. First,
we look for critical points of the functional I by lemma 21 and prove the minimal
period is pT'/l, where [ satisfies theorem 15. Second, we prove I has at least 2kM
distinct critical points. ‘

Step 1. Asin Sect. 3, we have defined a Z,, index on the space E,r. Denote

T2 727

a=pT- (sin ;_;) o (/3—736) B-2 (1 — %) and the interval D = (0,a+1). For
any A € ¥, define i, = inf,,cqu (1) 7 (1(A) N (Sp, N Y)), then (%,7}) is a pseudo
Zp index by lemma 15. Write

c;= inf supl(z), j=1,2,---,2kN.
? i;’,(A)Zj:cGB() J |

From proposition 18 and lemma 24, there follows

0<ci<ep<cz<---<can<a<a+l. (20)

By lemma 21, we have {c; }jif are critical values of I and whenc=c¢, 41 =+ =
cr+1, where | > 1, 45 (K.) > 1, here K. = {z € Epr,I'(z) = 0,1(z) = c}.

Next we show when z € K.;, j = 1,2,---,2kN, z has minimal period pT/I.
Making use of proposition 18, lemma 24 and (19), we only to prove

3
s Qqm B-2

B—2 2a00 sin oF
< oT - e
@ =Ppf Mo ( 9 @M ’

where a was defined as above. By direct computation, we have when (14) in

a3
2 2a08 sin 7= ) d-2

theorem 15 holds, a < pT - may - (‘3%) . ( 7
From proposition 18, for any x € K.,, j = 1,2, -- ,2kN, x has minimal period
pT/l. where [ is an integer and | < @, l|p. Using (12), 1 <[ <q.

1s true.
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Step 2: If ¢ < ¢ < -+ < copn, then I has at least 2kN distinct critical
points. '
Ifc=c¢j =" -=cjq, [ > 1, then by lemma 21, i;(Kc) >1+1 > 1. Following
we prove K. contains infinity distinct critical points.
In fact, if z € K., set K. = {¢/z(n)|j = 0,1,---,pT/l — 1}, since z has
minimal period pT/l, then if j; # jo, we have p/'z(n) # p’2z(n). Define ¥ :

K. — TF\{6}, then
V(Wa(n) =", j=0,1,---,pT/l-1.

Thus,

U(u(pz(n))) = (i Hia(n) = €7 7 = e'F U(ua(n)).
Therefore,
in(K.)=1
This is a contradictor. The proof of theorem 15 is completed.

Theorem 16 can be proved by essentially the same arguments. We only need
to prove under assumptions of theorem 16, I(x) < Bs is true for any = € 'y ,,
e(FFn—3)i €

= e st = Sar

£ € C?M 2sin— (" = p*}.
\ | p

Here we omit the proof.
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