• Title/Summary/Keyword: gut-microbiome

Search Result 136, Processing Time 0.025 seconds

Differences Regarding the Molecular Features and Gut Microbiota Between Right and Left Colon Cancer

  • Kim, Kwangmin;Castro, Ernes John T.;Shim, Hongjin;Advincula, John Vincent G.;Kim, Young-Wan
    • Annals of Coloproctology
    • /
    • v.34 no.6
    • /
    • pp.280-285
    • /
    • 2018
  • For many years, developmental and physiological differences have been known to exist between anatomic segments of the colorectum. Because of different outcomes, prognoses, and clinical responses to chemotherapy, the distinction between right colon cancer (RCC) and left colon cancer (LCC) has gained attention. Furthermore, variations in the molecular features and gut microbiota between right and LCCs have recently been a hot research topic. CpG island methylator phenotype-high, microsatellite instability-high colorectal cancers are more likely to occur on the right side whereas tumors with chromosomal instability have been detected in approximately 75% of LCC patients and 30% of RCC patients. The mutation rates of oncogenes and tumor suppressor genes also differ between RCC and LCC patients. Biofilm is more abundant in RCC patients than LLC patients, as are Prevotella, Selenomonas, and Peptostreptococcus. Conversely, Fusobacterium, Escherichia/Shigella, and Leptotrichia are more abundant in LCC patients compared to RCC patients. Distinctive characteristics are apparent in terms of molecular features and gut microbiota between right and LCC. However, how or to what extent these differences influence diverging oncologic outcomes remains unclear. Further clinical and translational studies are needed to elucidate the causative relationship between primary tumor location and prognosis.

Fishing for synucleinopathy models

  • Noor, Suzita Mohd;Norazit, Anwar
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.3
    • /
    • pp.117-139
    • /
    • 2022
  • Synucleinopathies such as Parkinson's disease (PD) are incurable neurodegenerative conditions characterised by the abnormal aggregation of α-synuclein protein in neuronal cells. In PD, fibrillary synuclein aggregation forms Lewy bodies and Lewy neurites in the substantia nigra and cortex on the brain. Dementia with Lewy bodies and multiple system atrophy are also associated with α-synuclein protein abnormalities. α-synuclein is one of three synuclein proteins, and while its precise function is still unknown, one hypothesis posits that α-synuclein propagates from the enteric nervous system through the vagus nerve and into the brain, resulting in synucleinopathy. Studies on synucleinopathies should thus encompass not only the central nervous system but must necessarily include the gut and microbiome. The zebrafish (Danio rerio) is a well-established model for human neuronal pathologies and have been used in studies ranging from genetic models of hereditary disorders to neurotoxin-induced neurodegeneration as well as gut-brain-axis studies. There is significant genetic homology between zebrafish and mammalian vertebrates which is what makes the zebrafish so amenable to modelling human conditions but in the case of synucleinopathies, the zebrafish notably does not possess an α-synuclein homolog. Synuclein orthologs are present in the zebrafish however, and transgenic zebrafish that carry human α-synuclein have been generated. In addition, the zebrafish is a highly advantageous model and ideal replacement for reducing the use of mammalian models. This review discusses the application of the zebrafish as a model for synucleinopathies in efforts to further understand synuclein function and explore therapeutic strategies.

Clinical efficacy of L. plantarum, L. reuteri, and Ped. acidilactici probiotic combination in canine atopic dermatitis (개 아토피 피부염에서 3종 프로바이오틱스 복합제의 임상 효능 평가)

  • Hye-Kang Jung;Jae-Hun Kim;Jeseong Park;Yeonhee Kim;Minn Sohn;Chul Park
    • Korean Journal of Veterinary Service
    • /
    • v.47 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • Canine atopic dermatitis (CAD) is an inflammatory and pruritic skin disease with a genetic predisposition, characterized by allergic sensitivity. It is known for its distinctive clinical features, including a high recurrence rate and chronic progression. To manage CAD, medications such as steroids and immunosuppressants are commonly used, but consideration should be given to the potential resistance and side effects associated with long-term use. In order to reduce these risks, various adjunctive factors are currently under consideration. One of these adjunctive agents, probiotics have shown effectiveness in regulating atopic dermatitis by modulating immune responses, as demonstrated in several recent studies. In this study, a substance combining three probiotics-L. plantarum, L. reuteri, and Ped. Acidilactici-was used in patients diagnosed with CAD, and its clinical effects and safety were evaluated. The trial involved four groups: a group receiving conventional treatment for atopic dermatitis (A), a group prescribed low-dose probiotics (B), a group prescribed high-dose probiotics (C), and a group prescribed topical probiotics (D). For assessment, the Canine Atopic Dermatitis Extent and Severity Index (CADESI), Trans-Epidermal Water Loss (TEWL) test, gut microbiome, and serum IgE test were conducted. As a result, the CAD severity index (CADESI-4) significantly decreased in the probiotics groups (B & C). In the serum total IgE test, the groups consuming probiotics showed a significant difference, while the group using topical probiotics (D) did not exhibit a significant change. Also, the TEWL test showed improved scores in the probiotics groups (B & C). Therefore, L. plantarum, L. reuteri, and Ped. Acidilactici probiotic combination could be considered as an effective adjunctive treatment, especially for atopic patients with moderate to severe skin lesions.

Impact of Breed on the Fecal Microbiome of Dogs under the Same Dietary Condition

  • Reddy, Kondreddy Eswar;Kim, Hye-Ran;Jeong, Jin Young;So, Kyoung-Min;Lee, Seul;Ji, Sang Yun;Kim, Minji;Lee, Hyun-Jung;Lee, Sungdae;Kim, Ki-Hyun;Kim, Minseok
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1947-1956
    • /
    • 2019
  • The gut microbiome influences the health and well-being of dogs. However, little is known about the impact of breed on the fecal microbiome composition in dogs. Therefore, we aimed to investigate the differences in the fecal microbiome in three breeds of dog fed and housed under the same conditions, namely eight Maltese (8.0 ± 0.1 years), eight Miniature Schnauzer (8.0 ± 0.0 years), and nine Poodle dogs (8.0 ± 0.0 years). Fresh fecal samples were collected from the dogs and used to extract metagenomic DNA. The composition of the fecal microbiome was evaluated by 16S rRNA gene amplicon sequencing on the MiSeq platform. A total of 840,501 sequences were obtained from the 25 fecal samples and classified as Firmicutes (32.3-97.3% of the total sequences), Bacteroidetes (0.1-62.6%), Actinobacteria (0.2-14.7%), Fusobacteria (0.0-5.7%), and Proteobacteria (0.0-5.1%). The relative abundance of Firmicutes was significantly lower in the Maltese dog breed than that in the other two breeds, while that of Fusobacteria was significantly higher in the Maltese than in the Miniature Schnauzer breed. At the genus level, the relative abundance of Streptococcus, Fusobacterium, Turicibacter, Succinivibrio, and Anaerobiospirillum differed significantly among the three dog breeds. These genera had no correlation with age, diet, sex, body weight, vaccination history, or parasite protection history. Within a breed, some of these genera had a correlation with at least one blood chemistry value. This study indicates that the composition of the fecal microbiome in dogs is affected by breed.

Microbial composition in different gut locations of weaning piglets receiving antibiotics

  • Li, Kaifeng;Xiao, Yingping;Chen, Jiucheng;Chen, Jinggang;He, Xiangxiang;Yang, Hua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.78-84
    • /
    • 2017
  • Objective: The aim of this study was to examine shifts in the composition of the bacterial population in the intestinal tracts (ITs) of weaning piglets by antibiotic treatment using high-throughput sequencing. Methods: Sixty 28-d-old weaning piglets were randomly divided into two treatment groups. The Control group was treated with a basal diet without antibiotics. The Antibiotic group's basal diet contained colistin sulfate at a concentration of 20 g per ton and bacitracin zinc at a concentration of 40 g per ton. All of the pigs were fed for 28 days. Then, three pigs were killed, and the luminal contents of the jejunum, ileum, cecum, and colon were collected for DNA extraction and high-throughput sequencing. Results: The results showed that the average daily weight gain of the antibiotic group was significantly greater (p<0.05), and the incidence of diarrhea lower (p>0.05), than the control group. A total of 812,607 valid reads were generated. Thirty-eight operational taxonomic units (OTUs) that were found in all of the samples were defined as core OTUs. Twenty-one phyla were identified, and approximately 90% of the classifiable sequences belonged to the phylum Firmicutes. Forty-two classes were identified. Of the 232 genera identified, nine genera were identified as the core gut microbiome because they existed in all of the tracts. The proportion of the nine core bacteria varied at the different tract sites. A heat map was used to understand how the numbers of the abundant genera shifted between the two treatment groups. Conclusion: At different tract sites the relative abundance of gut microbiota was different. Antibiotics could cause shifts in the microorganism composition and affect the composition of gut microbiota in the different tracts of weaning piglets.

Dietary Diversity during Early Infancy Increases Microbial Diversity and Prevents Egg Allergy in High-Risk Infants

  • Bo Ra Lee;Hye-In Jung;Su Kyung Kim;Mijeong Kwon;Hyunmi Kim;Minyoung Jung;Yechan Kyung;Byung Eui Kim;Suk-Joo Choi;Soo-Young Oh;Sun-Young Baek;Seonwoo Kim;Jaewoong Bae;Kangmo Ahn;Jihyun Kim
    • IMMUNE NETWORK
    • /
    • v.22 no.2
    • /
    • pp.17.1-17.14
    • /
    • 2022
  • We aimed to investigate associations of dietary diversity (DD) with gut microbial diversity and the development of hen's egg allergy (HEA) in infants. We enrolled 68 infants in a high-risk group and 32 infants in a control group based on a family history of allergic diseases. All infants were followed from birth until 12 months of age. We collected infant feeding data, and DD was defined using 3 measures: the World Health Organization definition of minimum DD, food group diversity, and food allergen diversity. Gut microbiome profiles and expression of cytokines were evaluated by bacterial 16S rRNA sequencing and real-time reverse transcriptase-polymerase chain reaction. High DD scores at 3 and 4 months were associated with a lower risk of developing HEA in the high-risk group, but not in the control group. In the high-risk group, high DD scores at 3, 4, and 5 months of age were associated with an increase in Chao1 index at 6 months. We found that the gene expression of IL-4, IL-5, IL-6, and IL-8 were higher among infants who had lower DD scores compared to those who had higher DD scores in high-risk infants. Additionally, high-risk infants with a higher FAD score at 5 months of age showed a reduced gene expression of IL-13. Increasing DD within 6 months of life may increase gut microbial diversity, and thus reduce the development of HEA in infants with a family history of allergic diseases.

The Prevention of Gut Microbiome and Intestinal Diseases from Supercritical Heat-treated Radish Complex Extracts (초임계 열처리된 무 복합추출물의 장내세균총 및 장질환 예방 효과)

  • Kim, Hyun Kyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.421-429
    • /
    • 2019
  • The purpose of this study was to investigate the effects of intestinal bacteria on the growth of enteric bacteria, especially infectious harmful bacteria such as food poisoning, gastritis and enteritis, and the growth of beneficial bacteria. By dividing the rat into three test groups; normal control group, Loperamide-treated group, and supercritical heat-treated radish complex extracts(HRE)-treated group, animal experiments were performed to inhibit the growth of harmful bacteria without affecting the growth of beneficial bacteria in the intestine. It was found that it can be usefully used as an effective and safe health food composition for improving intestinal function and bacterial intestinal disease. In particular, it can be concluded that supercritical heat-treated radish complex extract is a safe food that does not show any side effects even when taken for a long time.

Effects of Dietary Carbohydrases on Fecal Microbiome Composition of Lactating Sows and Their Piglets

  • Lee, Jeong Jae;Song, Minho;Kyoung, Hyunjin;Park, Kyeong Il;Ryu, Sangdon;Kim, Younghoon;Shin, Minhye
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.776-782
    • /
    • 2022
  • Corn-soybean meal diets are commonly used in the pork industry as a primary source of energy and protein. However, such a diet generally contains non-starch polysaccharides (NSPs) which present a challenge in finding ways to improve their availability and digestibility. Dietary multi-carbohydrases (MCs) have been proposed as an efficient approach to utilize NSPs, and can result in improved growth performance and host intestinal fitness. In this study, we evaluated the effects of MC in lactation diets on gut microbiota composition of lactating sows and their litters. The experimental design contained two dietary treatments, a diet based on corn-soybean meal (CON), and CON supplemented with 0.01% multigrain carbohydrases (MCs). Sow and piglet fecal samples were collected on days 7 and 28 after farrowing. Based on the results from 16S rRNA gene amplicon sequencing, MC led to changes in species diversity and altered the microbial compositions in lactating sows and their piglets. Specifically, the MC treatment induced an increase in the proportions of Lactobacillus in piglets. Clostridium and Spirochaetaceae showed a significantly reduced proportion in MC-treated sows at day 28. Our results support the beneficial effects of dietary carbohydrases and their link with improved production due to better host fitness outcomes and gut microbiota composition.

Isolation and Characterization of Bifidobacterium longum subsp. longum BCBR-583 for Probiotic Applications in Fermented Foods

  • Yi, Da Hye;Kim, You-Tae;Kim, Chul-Hong;Shin, Young-Sup;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1846-1849
    • /
    • 2018
  • Recent human gut microbiome studies have supported that the genus Bifidobacterium is one of the most beneficial bacteria for human intestinal health. To develop a new probiotic strain for functional food applications, fourteen fecal samples were collected from healthy Koreans and the strain BCBR-583 was newly selected and isolated from a 25-year-old Korean woman's fecal sample using the selective medium for Bifidobacterium. Subsequent fructose-6-phosphate phosphoketolase (F6PPK) test and 16S rRNA gene sequencing analysis of the strain BCBR-583 confirmed that it belongs to B. longum subsp. longum. The stress resistance tests showed that it has oxygen and heat tolerance activities (5- and 3.9-fold increase for 24 h at 60 and 120 rpm, respectively; $78.61{\pm}6.67%$ survival rate at $45^{\circ}C$ for 24 h). In addition, gut environment adaptation tests revealed that this strain may be well-adapted in the gut habitat, with gastric acid/bile salt resistance ($85.79{\pm}1.53%$, survival rate under 6 h treatments of gastric acid and bile salt) and mucin adhesion ($73.72{\pm}7.36%$). Furthermore, additional tests including cholesterol lowering assay showed that it can reduce $86.31{\pm}1.85%$ of cholesterol. Based on these results, B. longum BCBR-583 has various stress resistance for survival during food processing and environmental adaptation activities for dominant survival in the gut, suggesting that it could be a good candidate for fermented food applications as a new probiotic strain.

Current Trends of Traditional Herbal Medicine Research on Allergic Disease with Dysbiosis (알레르기 질환에서 장내미생물 조절을 통한 한약의 효과 연구동향)

  • Yun-Jung Lee;Min-Hee Kim
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.37 no.1
    • /
    • pp.57-68
    • /
    • 2024
  • Objectives : The purpose of this study is to analyze the current trends of various herbal medicine research on allergic disease with dysbiosis. Methods : Electronic searches were performed using Pubmed, Research Information Sharing Service(RISS), Korean studies Information Service System(KISS), Oriental medicine Advanced Searching Integrated System(OASIS). Results : We analyzed ten studies on the effect of herbal medicine on allergic disease with dysbiosis. Eight studies were animal experimental studies, and two were randomized clinical trial(RCT) study and one-group pretest-posttest research, respectively. Among the studies, three studies were on atopic dermatitis, two on allergic rhinitis, and five on asthma. All different herbal medicines were used in the studies. Changes in gut microbiota composition were observed in nine studies except for 1 RCT study. In eight animal experimental studies, there was significant reduction in allergy-related inflammatory markers. Six studies evaluated the change of metabolites related to gut microbiota and three of them showed significant increase in short-chain fatty acids(SCFA). Conclusion : This study provides current trends of studies on herbal medicine research on allergic disease with dysbiosis. Most research is conducted using animal experiments, and this is a relatively recent trend. These studies offer basic knowledge on the correlation between herbal medicine, gut microbiota, and anti-inflammatory effects in allergic disease.