• 제목/요약/키워드: gut

검색결과 1,137건 처리시간 0.025초

Bidirectional Interactions between Green Tea (GT) Polyphenols and Human Gut Bacteria

  • Se Rin Choi;Hyunji Lee;Digar Singh;Donghyun Cho;Jin-Oh Chung;Jong-Hwa Roh;Wan-Gi Kim;Choong Hwan Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권10호
    • /
    • pp.1317-1328
    • /
    • 2023
  • Green tea (GT) polyphenols undergo extensive metabolism within gastrointestinal tract (GIT), where their derivatives compounds potentially modulate the gut microbiome. This biotransformation process involves a cascade of exclusive gut microbial enzymes which chemically modify the GT polyphenols influencing both their bioactivity and bioavailability in host. Herein, we examined the in vitro interactions between 37 different human gut microbiota and the GT polyphenols. UHPLC-LTQ-Orbitrap-MS/MS analysis of the culture broth extracts unravel that genera Adlercreutzia, Eggerthella and Lactiplantibacillus plantarum KACC11451 promoted C-ring opening reaction in GT catechins. In addition, L. plantarum also hydrolyzed catechin galloyl esters to produce gallic acid and pyrogallol, and also converted flavonoid glycosides to their aglycone derivatives. Biotransformation of GT polyphenols into derivative compounds enhanced their antioxidant bioactivities in culture broth extracts. Considering the effects of GT polyphenols on specific growth rates of gut bacteria, we noted that GT polyphenols and their derivate compounds inhibited most species in phylum Actinobacteria, Bacteroides, and Firmicutes except genus Lactobacillus. The present study delineates the likely mechanisms involved in the metabolism and bioavailability of GT polyphenols upon exposure to gut microbiota. Further, widening this workflow to understand the metabolism of various other dietary polyphenols can unravel their biotransformation mechanisms and associated functions in human GIT.

굿공연사 기술을 위한 시고 - 굿의 공연화 방법 모색을 위한 - (A study on recording Gut's performance history - To search on how to create a performance out of Gut -)

  • 김형근
    • 공연문화연구
    • /
    • 제36호
    • /
    • pp.693-724
    • /
    • 2018
  • 이 글은 굿의 공연화 방법을 모색하기 위하여 시작되었다. 그 방법을 찾기 위해 먼저 지금까지 이루어졌던 굿공연을 정리해야 했다. 무엇보다 공연의 미덕은 '다양성 창출'이라고 생각하기에 기존의 공연 문법을 정리하고, 이와는 다른 길을 모색하기 위함이었다. 그러나 1980년대부터 본격화된 굿공연을 정리하는 것은 생각보다 쉽지 않은 일이었다. 기존에 한 번도 정리되지 않았기 때문이다. 그러기에 본 연구자의 직 간접적인 경험에 의거하여 중요한 공연들을 시대순으로 정리해보았다. 무엇보다 공연을 가능케 하는 것은 그 공연의 기획자(때론 개인이 아닌 그룹일 수 있고, 때론 기관이다)이기에 이들을 주목하였다. 전국민속예술경연대회, 공간사랑, 굿학회, 마당세실극장, 서울놀이마당, 국립국악원이 굿공연의 중심 공간 및 기획 주체였다. 굿공연사 기술은 그 자체로 가치있는 작업이다. 그러나 이 작업은 개인의 노력으로 하기에는 방대한 작업이며, 그 가치의 확산을 위해서는 공공프로젝트로 진행해야 한다. 이에 본고는 이에 대한 필요성을 제기하고 있다. 한편 본고는 앞서 말했듯이 굿의 공연화 방법을 모색하기 위한 전제조건으로 굿공연사를 기술했다. 시론적으로나마 굿공연사를 정리하니 대부분의 공연이 굿을 하는 이들이 공연 주체가 되었고, 그로 인하여 굿공연의 방식은 원래의 굿을 그대로 시간에 맞추어 실연하는 방식을 크게 벗어나지 못함을 알게 되었다. 이에 굿을 소재로 다른 방식의 공연을 하는 마당극패 신명과 연희패 The광대의 작업을 소개하였다. 이를 통해 총체적으로 얽혀있는 굿의 공연요소들이 잘 가공된다면 굳이 '재현'의 방식이 아닌, 새로운 공연으로의 소재나 메타포가 될 수 있을 것으로 기대하였다.

무당벌레 소화기관으로부터 장내세균의 분리 및 계통학적 다양성 (Biodiversity and Isolation of Gut Microbes from Digestive Organs of Harmonia axyridis)

  • 김기광;한송이;문청원;유용만;황경숙
    • 미생물학회지
    • /
    • 제47권1호
    • /
    • pp.66-73
    • /
    • 2011
  • 각 지역에서 수집한 무당벌레(JK, CK, CJ)의 소화기관을 채취하여 장내세균의 밀도를 조사한 결과, 호기배양의 경우 $6.0{\times}10^4$ CFU/gut, 혐기배양 결과 $8.0{\times}10^6$ CFU/gut로 계수되었다. 호기적 조건에서 배양된 세균 집락은 총 7가지 형태로 분류되었으며, 혐기적 조건에서 배양된 집락은 총 3가지 형태로 유사한 특징을 나타내었다. 무당벌레 각 소화기관으로부터 호기성세균 34균주와 혐기성세균 82균주, 총 116균주의 장내세균을 순수분리하였다. 호기성 세균 34균주를 대상으로 16S rRNA 유전자 염기서열을 해석한 결과, ${\alpha}$-Proteobacteria (3균주), ${\gamma}$-Proteobacteria (2 균주), Firmicutes (24 균주), Actinobacteria (4 균주) 그리고 Deinococcus-Thermus (1균주) 계통군으로 분류되었다. Firmicutes 계통군의 Bacillus thuringiensis와 Staphylococcus 속의 다양한 종은 JK, CK 및 CI 무당벌레 소화기관에서 모두 공통적으로 분리되었다. 형태적으로 유사한 혐기세균의 16S rRNA-ARDRA 패턴양상을 분석하여 유사도 70%에서 비교한 결과, 17개 ARDRA group으로 분류되었다. 각 ARDRA group에 속하는 대표 혐기성세균의 16S rRNA 유전자 염기서열을 해석한 결과, 무당벌레 소화기관에서 분리된 모든 혐기성 장내세균은 ${\gamma}$-Proteobacteria 계통군에 속하는 것으로 나타났으며 Hafnia alvei, Enterobacter ludwigii, Enterobacter kobei, Pseudomonas oryzihabitans 그리고 Pseudomonas koreensis와 높은 유연관계를 갖는 것으로 확인되었다. 무당벌레 소화기관으로부터 분리된 전체 장내세균의 약 70%가 ${\gamma}$-Proteobacteria 계통군에 속하였으며, 23%가 Firmicutes 계통군으로 무당벌레 소화기관 내 주요 계통군임이 확인되었다.

Microbial short-chain fatty acids: a bridge between dietary fibers and poultry gut health - A review

  • Ali, Qasim;Ma, Sen;La, Shaokai;Guo, Zhiguo;Liu, Boshuai;Gao, Zimin;Farooq, Umar;Wang, Zhichang;Zhu, Xiaoyan;Cui, Yalei;Li, Defeng;Shi, Yinghua
    • Animal Bioscience
    • /
    • 제35권10호
    • /
    • pp.1461-1478
    • /
    • 2022
  • The maintenance of poultry gut health is complex depending on the intricate balance among diet, the commensal microbiota, and the mucosa, including the gut epithelium and the superimposing mucus layer. Changes in microflora composition and abundance can confer beneficial or detrimental effects on fowl. Antibiotics have devastating impacts on altering the landscape of gut microbiota, which further leads to antibiotic resistance or spread the pathogenic populations. By eliciting the landscape of gut microbiota, strategies should be made to break down the regulatory signals of pathogenic bacteria. The optional strategy of conferring dietary fibers (DFs) can be used to counterbalance the gut microbiota. DFs are the non-starch carbohydrates indigestible by host endogenous enzymes but can be fermented by symbiotic microbiota to produce short-chain fatty acids (SCFAs). This is one of the primary modes through which the gut microbiota interacts and communicate with the host. The majority of SCFAs are produced in the large intestine (particularly in the caecum), where they are taken up by the enterocytes or transported through portal vein circulation into the bloodstream. Recent shreds of evidence have elucidated that SCFAs affect the gut and modulate the tissues and organs either by activating G-protein-coupled receptors or affecting epigenetic modifications in the genome through inducing histone acetylase activities and inhibiting histone deacetylases. Thus, in this way, SCFAs vastly influence poultry health by promoting energy regulation, mucosal integrity, immune homeostasis, and immune maturation. In this review article, we will focus on DFs, which directly interact with gut microbes and lead to the production of SCFAs. Further, we will discuss the current molecular mechanisms of how SCFAs are generated, transported, and modulated the pro-and anti-inflammatory immune responses against pathogens and host physiology and gut health.

Recent Advances in Gut Microbiology and Their Possible Contribution to Animal Health and Production - A Review -

  • Kobayashi, Yasuo;Koike, Satoshi;Taguchi, Hidenori;Itabashi, Hisao;Kam, Dong K.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권6호
    • /
    • pp.877-884
    • /
    • 2004
  • Although gut microbial functions have been analyzed through cultivation of isolated microbes, molecular analysis without cultivation is becoming a popular approach in recent years. Gene cloning studies have partially revealed the mechanisms involved in fiber digestion of individual microbe. The molecular approach finally made it possible to analyze full genomes of the representative rumen cellulolytic bacteria Fibrobacter and Ruminococcus. The coming database may contain useful information such as regulation of gene expression relating to fiber digestion. Meanwhile, unculturable bacteria are still poorly characterized, even though they are main constituents of gut microbial ecosystem. The molecular analysis is essential to initiating the studies on these unculturable bacteria. The studies dealing with rumen and large intestine are revealing considerable complexity of the microbial ecosystems with many undescribed bacteria. These bacteria are being highlighted as possibly functional members contributing to feed digestion. Manipulation of gut bacteria and gut ecology for improving animal production is still at challenging stage. Bacteria newly introduced in the rumen, whether they are genetically modified or not, suffer from poor survival. In one of these attempts, Butyrivibrio fibrisolvens expressing a foreign dehalogenase was successfully established in sheep rumen to prevent fluoroacetate poisoning. This expands choice of forages in tropics, since many tropic plants are known to contain the toxic fluoroacetate. This example may promise the possible application of molecular breeding of gut bacteria to the host animals with significance in their health and nutrition. When inoculation strategies for such foreign bacteria are considered, it is obvious that we should have more detailed information of the gut microbial ecology.

비만에서 장내 미생물 균총의 역할과 발효 한양의 활용 (The Role of Gut Microbiota in Obesity and Utilization of Fermented Herbal Extracts)

  • 박정현;김호준;이명종
    • 한방비만학회지
    • /
    • 제9권1호
    • /
    • pp.1-14
    • /
    • 2009
  • Complex microbial communities play an important role in the human health and co-evolved with human in the form of symbiosis. Many literatures provide new evidences that the increased prevalence of obesity cannot be attributed solely to changes in the human genome, nutritional habits, or reduction of physical activity in our daily lives. The intestinal flora was recently proposed as an environmental factor responsible for the control of body weight and energy metabolism. A number of studies suggest that the modulation of gut microbiota affects host metabolism and has an impact on energy storage and demonstrated a role for the gut microbiota in weight gain, fat increase, and insulin resistance. Variations in microbiota composition are found in obese humans and mice and the microbiota from an obese mouse confers an obese phenotype when transferred to an axenic mouse. As well, the gut microbial flora plays a role in converting nutrients into calories. Specific strategies for modifying gut microbiota may be a useful means to treat or prevent obesity. Dietary modulations of gut microbiota with a view to increasing bifidobacteria have demonstrated to reduce endotoxemia and improve metabolic diseases such as obesity. The fermentation of medicinal herbs is intended to exert a favorable influence on digestability, bioavailability and pharmacological activity of herbal extract. Therefore we also expect that the fermented herbal extracts may open up a new area to treat obesity through modulating gut microbiota.

  • PDF

서울 마을굿 무속복식에 나타난 관모 연구 (A Study of Official Hats Shown on Shaman's Costumes of Seoul Village Gut)

  • 김은정;임린
    • 한국의류산업학회지
    • /
    • 제17권3호
    • /
    • pp.364-371
    • /
    • 2015
  • This study investigated and analyzed Sadanggut for General Namyi, Agisee Gutdang in Haengdang-dong, Dodanggut in Bonghwa Mountainto examine the type and characteristics of official hats for shaman's costumes based on Seoul village gutas a spiritualistic shaman revealing the divinity of music for gutthrough singing, dancing, divine material and official hats. Commonly worn official hats were Goggal(conical hats), Jeonlip(soldier's felt hats), and Heuklip(black hats) for Seoul village gut as the object of thisstudy. Each official hat had a close relationship with subjects for divinity and musical meaning for gut. Julip(Red hats), Jokduri(bride's headpiece), helmets, Iksubgwan(King's official hat), and Daesu(Queen's a big wig with various hairpins) were also worn. Official hats worn for Seoul village gutwere understood to symbolize divinity and raise authority and dignity to the public through aggressive appearance, exaggeration and splendor. Concretely, official hats at Seoul village gut first had roles to materialize the divinity of each music of gut. Second, recognized as a part of performance or traditional culture in present day, aggressive official hats were favored to supply splendid attraction and maximize scenes of divined heroic epic poem in gut. Third, for Seoul village gut, colors and silhouettes of modern traditional costumes were reflected pursuing partial change and focused on exaggeration and splendor to express the mirth and festival of gutwhile maintaining traditional costumes.

Difference of gut microbiota composition based on the body condition scores in dogs

  • Chun, Ju Lan;Ji, Sang Yun;Lee, Sung Dae;Lee, Yoo Kyung;Kim, Byeonghyeon;Kim, Ki Hyun
    • Journal of Animal Science and Technology
    • /
    • 제62권2호
    • /
    • pp.239-246
    • /
    • 2020
  • Microorganism residing in the gut has been known to have important roles in the animal body. Microbes and host microenvironment are highly related with host's health including energy metabolism and immune system. Moreover, it reported that gut microbiome is correlated with diseases like obesity in human and dogs. There have been many studies to identify and characterize microbes and their genes in human body. However, there was little information of microbiome in companion animals. Here, we investigated microbiota communities in feaces from twenty - four Beagles (aged 2 years old) and analyzed the taxonomy profile using metagenomics to study the difference among gut microbiome based on body condition score (BCS). gDNA was isolated from feaces, sequenced and clustered. Taxonomy profiling was performed based on the NCBI database. BCS was evaluated once a week according to the description provided by World Small Animal Veterinary Association. Firmicutes phylum was the most abundant followed by Bacteroidetes, Fusobacteria, Proteobacteria and Actinobacteria. That main microbiota in gut were differently distributed based on the BCS. Fusobacteria has been known to be associated with colon cancer in human. Interestingly, Fusobacteria was in the third level from the top in healthy dog's gut microbiome. In addition, Fusobacteria was especially higher in overweight dogs which had 6 scales of BCS. Species Fusobacterium perfoetens was also more abundant when dogs were in BCS 6. It implied that F. perfoetens would be positively related with overweight in dogs. These finding would contribute to further studies of gut microbiome and their functions to improve dog's diets and health condition.

Gut Microbiome Alterations and Functional Prediction in Chronic Spontaneous Urticaria Patients

  • Zhang, Xinyue;Zhang, Jun;Chu, Zhaowei;Shi, Linjing;Geng, Songmei;Guo, Kun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.747-755
    • /
    • 2021
  • The effects of the gut microbiome on both allergy and autoimmunity in dermatological diseases have been indicated in several recent studies. Chronic spontaneous urticaria (CSU) is a disease involving allergy and autoimmunity, and there is no report detailing the role of microbiota alterations in its development. This study was performed to identify the fecal microbial composition of CSU patients and investigate the different compositions and potential genetic functions on the fecal microbiota between CSU patients and normal controls. The gut microbiota of CSU patients and healthy individuals were obtained by 16s rRNA massive sequencing. Gut microbiota diversity and composition were compared, and bioinformatics analysis of the differences was performed. The gut microbiota composition results showed that Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia were dominant microbiota in CSU patients. The differential analysis showed that relative abundance of the Proteobacteria (p = 0.03), Bacilli (p = 0.04), Enterobacterales (p = 0.03), Enterobacteriaceae (p = 0.03) was significantly increased in CSU patients. In contrast, the relative abundance of Megamonas, Megasphaera, and Dialister (all p < 0.05) in these patients significantly decreased compared with healthy controls. The different microbiological compositions impacted normal gastrointestinal functions based on function prediction, resulting in abnormal pathways, including transport and metabolism. We found CSU patients exhibited gut microbiota dysbiosis compared with healthy controls. Our results indicated CSU is associated with gut microbiota dysbiosis and pointed out that the bacterial taxa increased in CSU patients, which might be involved in the pathogenesis of CSU. These results provided clues for future microbial-based therapies on CSU.

A Detrimental Role of Immunosuppressive Drug, Dexamethasone, During Clostridium difficile Infection in Association with a Gastrointestinal Microbial Shift

  • Kim, Hyeun Bum;Wang, Yuankai;Sun, Xingmin
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.567-571
    • /
    • 2016
  • We investigated the increased risk of Clostridium difficile infection (CDI) caused by the combined use of antibiotics and an immunosuppressive drug in a mouse model. Our data showed that an approximate return to pretreatment conditions of gut microbiota occurred within days after cessation of the antibiotic treatment, whereas the recovery of gut microbiota was delayed with the combined treatment of antibiotics and dexamethasone, leading to an increased severity of CDI. An alteration of gut microbiota is a key player in CDI. Therefore, our data implied that immunosuppressive drugs can increase the risk of CDI through the delayed recovery of altered gut microbiota.