Browse > Article
http://dx.doi.org/10.5713/ajas.2004.877

Recent Advances in Gut Microbiology and Their Possible Contribution to Animal Health and Production - A Review -  

Kobayashi, Yasuo (Graduate School of Agriculture, Hokkaido University)
Koike, Satoshi (Graduate School of Agriculture, Hokkaido University)
Taguchi, Hidenori (Faculty of Bioresources, Mie University)
Itabashi, Hisao (Faculty of Agriculture, Tokyo University of Agriculture and Technology)
Kam, Dong K. (School of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Ha, Jong K. (School of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.17, no.6, 2004 , pp. 877-884 More about this Journal
Abstract
Although gut microbial functions have been analyzed through cultivation of isolated microbes, molecular analysis without cultivation is becoming a popular approach in recent years. Gene cloning studies have partially revealed the mechanisms involved in fiber digestion of individual microbe. The molecular approach finally made it possible to analyze full genomes of the representative rumen cellulolytic bacteria Fibrobacter and Ruminococcus. The coming database may contain useful information such as regulation of gene expression relating to fiber digestion. Meanwhile, unculturable bacteria are still poorly characterized, even though they are main constituents of gut microbial ecosystem. The molecular analysis is essential to initiating the studies on these unculturable bacteria. The studies dealing with rumen and large intestine are revealing considerable complexity of the microbial ecosystems with many undescribed bacteria. These bacteria are being highlighted as possibly functional members contributing to feed digestion. Manipulation of gut bacteria and gut ecology for improving animal production is still at challenging stage. Bacteria newly introduced in the rumen, whether they are genetically modified or not, suffer from poor survival. In one of these attempts, Butyrivibrio fibrisolvens expressing a foreign dehalogenase was successfully established in sheep rumen to prevent fluoroacetate poisoning. This expands choice of forages in tropics, since many tropic plants are known to contain the toxic fluoroacetate. This example may promise the possible application of molecular breeding of gut bacteria to the host animals with significance in their health and nutrition. When inoculation strategies for such foreign bacteria are considered, it is obvious that we should have more detailed information of the gut microbial ecology.
Keywords
Gut Microbes; Ecology; Molecular Analysis; Recombinant; Animal Production;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Cappa, F., B. Riboli, F. Rossi, M. L. Callegari and P. S. Cocconelli. 1997. Construction of novel Ruminococcus albus strains with improved cellulase activity by cloning of Streptomyces rochei endoglucanase gene. Biotechnol. Lett. 19:1151-1155.
2 Gregg, K., C. L. Cooper, D. J. Schaefer, H. Sharpe, C. E. Beard, G. Allen and J. Xu. 1994. Detoxification of the plant toxin fluoroacetate by a genetically modified rumen bacterium. Bio/Technol. 12:1361-1365.
3 Kam, D. K. 2000. Cloning of xylanase gene from Piromyces communis and vector construction for transformation to anaerobic bacteria. Seoul Natl. Univ. MS thesis.
4 Kobayashi, Y. and R. Onodera. 1999. Application of molecular biology to rumen microbes - Review-. Asian-Aust. J. Anim. Sci. 12:77-83.
5 Kobayashi, Y. and M. Yamamoto. 2002. Factors that limit maintenance of recombinant rumen bacterium in sheep rumen. Anim. Sci. J. 73:131-136.
6 Rasmussen, M. A., B. A. White and R. B. Hespell. 1989. Improved assay for quantitating adherence of ruminal bacteria to cellulose. Appl. Environ. Microbiol. 55:2089-2091.
7 Singh, B., T. J. Bhat and B. Singh. 2001. Exploiting gastrointestinal microbes for livestock and industrial development -Review-. Asian-Aust. J. Anim. Sci. 14:567-586.
8 Tajima, K., R. I. Aminov, T. Nagamine, K. Ogata, M. Nakamura, H. Matsui and Y. Benno. 1999. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries.FEMS Micribiol. Ecol. 29:159-169.
9 Varel, V. H., J. T. Yen and K. K. Kreikmeiser. 1995. Addition of cellulolytic clostridia to the bovine rumen and pig intestinal tract. Appl. Environ. Mivrobiol. 61:1116-1119.
10 Whitford, M. F., R. J. Forster, C. E. Beard, J. Gong and R. M. Teather. 1998. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe, 4:153-163.
11 Takenaka, A., C. G. D Silva, H. Kudo, H. Itabashi and K. J. Cheng. 1999. Molecular cloning, expression and characterization of an endo-$\beta$1,4-glucanase cDNA from Epidinium caudatum. J. Gen. Appl. Microbiol. 45:57-61.
12 Gregg, K., G. Allen and C. E. Beard. 1996. Genetic manipulation of rumen bacteria: from potential to reality. Aust. J. Agric. Res. 47:247-256.
13 Wallace, R. J. 1992. Rumen microbiology, biotechnology and ruminant nutrition: the application of research findings to a complex microbial ecosystem. FEMS Microbiol. Lett. 100:529-534.
14 Weimer, P. J., G. C. Waghorn, C. L. Odt and D. R. Mertens. 1999. Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows. J. Dairy Sci. 82:122-134.
15 Daniel, A. S., J. Martin, I. Vanat, T. R. Whitehead and H. J. Flint. 1995. Expression of a cloned cellulase/xylanase gene from Prevotella ruminicola in Bacteroides vulgatus, Bacteroides uniformis and Prevotella ruminicola. J. Appl. Bacteriol. 79:417-424.
16 Reilly, K. and G. T. Attwood. 1998. Detection of Clostridium proteoclasticum and closely related strains in the rumen by competitive PCR. Appl. Environ. Microbiol. 64:907-913.
17 Devillard, E., C. J. Newbold, K. P. Scott, E. Forano, R. J. Wallace, J. P. Jouany and H. J. Flint. 1999. A xylanase produced by the rumen anaerobic protozoan Polyplastron multivesiculatum shows close sequence family to family 11 xylanases from gram-positive bacteria. FEMS Microbiol. Lett. 191:145-152.
18 Kobayashi, Y. 2003. Recombinant rumen bacteria: problems and opportunities. Nutr. Abst. Rev. (Series B), 73:51-59.
19 Allison, M. J., A. C. Hammond and R. J. Jones. 1990. Detection of ruminal bacteria that degrade toxic dehydroxypyridine compounds produced from mimosine. Appl. Environ. Microbiol. 56:590-594.
20 Kobayashi, Y., M. Yamada and M. Yamamoto. 2001. Survival of a recombinant rumen bacterium in the rumen of sheep. Anim. Sci. J., 72:344-346.
21 Teather, R. M. and R. J. Forster. 1998. Manipulating the rumen microflora with bacteriocins to improve ruminant production. Can. J. Anim. Sci. 78:57-69.
22 Kobayashi, Y., M. Wakita, R. Sakauchi and S. Hoshino. 1990. Effects of ionophores on rumen microbes and host animal nutrition. In: The Rumen Ecosystem-The Microbial Metabolism and Its Regulation (Ed. S. Hoshino, R. Onodera, H. Minato and H. Itabashi). pp. 179-186, Japan Sci. Soc. Press/Springer-Verlag, Tokyo/Berlin.
23 Kobayashi, Y., R. J. Forster and R. M. Teather. 2000. Development of a competitive polymerase chain reaction assay for the ruminal bacterium Butyrivibrio fibrisolvens OB156 and its use for tracking an OB156-derived recombinant. FEMS Microbiol. Lett. 188:185-190.
24 Tajima, K., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67:2766-2774.
25 Daly, K., C. S. Stewart, H. J. Flint and S. P. Shirazi-Beechey. 2001. Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes. FEMS Microbiol. Ecol. 38:141-151.
26 Kobayashi, Y., N. Okuda, M. Matsumoto, K. Inoue, M. Wakita and S. Hoshino. 1998. Constitutive expression of a heterologous Eubacterium ruminantium xylanase gene (xynA) in Butyrivibrio fibrisolvens. FEMS Microbiol. Lett. 163:11-17.
27 Koike, S. and Y. Kobayashi. 2001. Development and use of competitive PCR assays for the ruminal cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiology Letters, 204:361-366. 2001
28 Lin, C. and D. A.Stahl. 1995. Taxon-specific probes for the cellulolytic genus Fibrobacter reveal abundant and novel equine-associated populations. Appl. Environ. Microbiol. 61:1348-1351.
29 Whitehead, T. R. and H. J. Flint. 1995. Heterologous expression of an endoglucanase gene (endA) from the ruminal anaerobe Ruminococcus flavefaciens 17 in Streptococcus bovis and Streptococcus sanguis.
30 Kim, M. S. 2004. cPCR assay for the measurement of ruminal bacteria count and microbial attachment. Seoul Natl. Univ. MS thesis.
31 Krause, D. O., R. J. Bunch, N. D. Dalrymple, K. S. Gobius, W. J. Smith, X. P. Xue and C. S. McSweeney. 2001. Expression of a modified Neocallimastix patriciarum xylanase in Butyrivibrio fibrisolvens digests more fibre but can not effectively compete with highly fibrolytic bacteria in the rumen. J. Appl. Microbiol. 90:388-396.
32 McSweeney, C. S., B. Parmer, D. M. McNeil and D. O. Krause. 2001. Microbial interactions with tannins: nutritional consequences for ruminants. Anim. Feed Sci. Technol. 91:83-93.
33 Minato, H., E. Miyagawa and T. Suto. 1990. Techniques for analysis of rumen microbial ecosystems. In: The Rumen Microbial Ecosystem- The Microbial Metabolism and Its Regulation (Ed. S. Hoshino, R. Onodera, H. Minato and H.Itabashi). pp. 3-12. Japan Sci. Soc. Press/Springer-Verlag, Tokyo/Berlin.
34 Osawa, R. 1990. Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcus sp. isolated from feces of koalas. Appl. Environ. Microbiol. 56:829-831.
35 Kobayashi, Y., H. Taguchi, T. N. Goto, S. Koike and K. Ohmiya. 2003. Expression and export of a Ruminococcus albus cellulase in Butyrivibrio fibrisolvens through the use of an alternative gene promoter and signal sequence. Can. J. Microbiol. 49:375-382.
36 Koike, S., J. Pan, Y. Kobayashi and K. Tanaka. 2003a. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J. Dairy Sci. 86:1429-1435.
37 Forano, E. and H. J. Flint. 2000. Genetically modified organisms: consequences for ruminant health and nutrition. Ann. Zootech. 49:255-271.
38 Gregg, K., B. Hamdolf, K. Henderson, J. Kopecny and C. Wong. 1998. Genetically modified ruminal bacteria protect sheep from fluoroacetate poisoning. Appl. Environ. Microbiol. 64:3496-3498.
39 Ha, J. K., D. K. Kam and H. S. Jeon. 2000. Role of xylan degrading enzymes in fiber digestion in ruminants. Asian-Aust. J. Anim. Sci. 13:149-157.
40 Jun Hyun, S., J. K. Ha, L. M. Malburg, A. M. V. Gibbins and C. W. Forsberg. 2003. Characteristics of a cluster of xylanases in F. succinogenes S85. Can. J. Microbiol. 49:171-180.
41 Miyazaki, K., H. Miyamoto, D. K. Mercer, T. Hirase, J. C. Martin, Y.Kojima and H. J. Flint. 2003. Involvement of the multidomain regulatory protein XynR in positive control of xylanase gene expression in the ruminal anaerobe Prevotella bryantii B14. J. Bacteriol. 185:2219-2226.
42 Koike, S., S. Yoshitani, Y. Kobayashi, K. Tanaka. 2003b. Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol. Lett. 229:23-30.
43 White, B. A. and M. Morrison. 2001. Genomic and proteomic analysis of microbial function in the gastrointestinal tract of ruminants -Review-. Asian-Aust. J. Anim. Sci. 14:880-884.
44 Attwood, G. T., R. A. Lockington, G. P. Xue and J. D. Brooker. 1988. Use of a unique gene sequence as a probe to enumerate a strain of Bacteroides ruminicola introduced into the rumen. Appl. Environ. Microbiol. 54:534-539.
45 McSweeney, C. S., B. P. Dalrymple, K. S. Gobius, P. M. Kennedy, D. O. Krause, R. I. Mackie and G. P. Xue. 1999. The application of rumen biotechnology to improve the nutritive value of fibrous feedstuffs: pre- and post-ingestion. Livestock Prod. Sci. 59:265-283.
46 Teather, R. M., M. A. Hefford and R. J. Forster. 1997. Genetics of Rumen bacteria. In: The Rumen Microbial Ecosystem (2nd ed.) (Ed. P. N. Hobson and C. S. Stewart). pp. 427-466. Blackie Academic & Professional, London, UK.
47 Karita, S., K. Sakka and K. Ohmiya. 1997. Cellulosomes, cellulase complexes, of anaerobic microbes: their structure models and functions. In: Rumen Microbes and Digestive Physiology in Ruminants (Ed. H. Itabashi, R. Onodera, Y. Sasaki, K. Ushida and H. Yano). pp. 47-57, Japan Sci. Soc. Press, Tokyo/S. Kargel, Basel.
48 Forsberg, C. W., K. J. Cheng and B. A. White. 1997. Polysaccharide degradation in the rumen and large intestine. In: Gastrointestinal Microbiology Vol. 1. (Ed R. I. Mackie and B. A. White). pp. 319-379. International Thomson Publishing, New York.
49 Santra, A. and S. A. Karim. 2003. Rumen manipulation to improve animal productivity. Asian-Aust. J. Anim. Sci. 16:748-763.
50 Koike, S., Y. Shingu, H. Inaba, M. Kawai, Y. Kobayashi, H. Hata, K. Tanaka and M. Okubo. 2000. Fecal bacteria of Hokkaido native horses as characterized by microscopic enumeration and competitive PCR assays. J. Equine Sci. 11:45-50.
51 Tajima, K., S. Arai, K. Ogata, T. Nagamine, H. Matsui, M. Nakamura, R. I. Aminov and Y. Benno. 2000. Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe, 6:273-284.