Browse > Article

Biodiversity and Isolation of Gut Microbes from Digestive Organs of Harmonia axyridis  

Kim, Ki-Kwang (Department of Microbial & Nanomaterials, Mokwon University)
Han, Song-Ih (Department of Microbial & Nanomaterials, Mokwon University)
Moon, Chung-Won (Department of Applied Biology, Chungnam University)
Yu, Yong-Man (Department of Applied Biology, Chungnam University)
Whang, Kyung-Sook (Department of Microbial & Nanomaterials, Mokwon University)
Publication Information
Korean Journal of Microbiology / v.47, no.1, 2011 , pp. 66-73 More about this Journal
Abstract
Bacterial density distributions of gut microbes in the digestive organs of Harmonia axyridis collected from three different sources (JK, CK, and CJ) were $6.0{\times}10^4$ CFU/gut under aerobic culture condition and $8.0{\times}10^6$ CFU/gut under anaerobic culture condition. Seven colony types were observed under aerobic condition and three types of similarity were detected under anaerobic condition. In total, 116 strains, including 34 strains under aerobic condition, were isolated from the digestive organs of H. axyridis. Based on the analysis of the 16S rRNA gene sequence, aerobic gut microbes were assigned to the Proteobacteria, Actinobacteria, Firmicutes, and Deinococcus-Thermus. A large number of isolates belonged to the genus Bacillus and Staphylococcus of the Firmicutes commonly found in H. axyridis from different sites. Anaerobic gut microbes were found to be similar according to colony morphological, phylogenetic analysis using ARDRA. Eighty-two anaerobic gut microbes were clustered into 17 different ARDRA types according to HaeIII. Representative anaerobic gut microbes in each ARDRA group were divided into five species of ${\gamma}$-Proteobacteria based on 16S rRNA gene sequence analysis; Hafnia alvei, Enterobacter ludwigii, Enterobacter kobei, Pseudomonas oryzihabitans and Pseudomonas koreensis. Phylogenetic analysis indicated that about 70% of the isolates belonged to ${\gamma}$-Proteobacteria, suggesting predominance of gut microbes.
Keywords
Harmonia axyridis; digestive organ; gut microbes;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Thomson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W; improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.   DOI   ScienceOn
2 Thomson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W; improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.   DOI   ScienceOn
3 Wheeler, M.M., M.R. Tarver, M.R. Coy, and M.E Scharf. 2010. Characterization of four esterase genes and esterase activity from the gut of the termite Reticulitermes flavipes. Arch. Ins. Biochem. Physiol. 73, 30-48.
4 Rudi, K., M. Zimonja, and T. Næs 2006. Alignment idependent bi-linear multivariate modeling (AIBIMM) for global analyses of 16S rRNA phylogeny. Int. J. Syst. Evol. Microbiol. 56, 1565-1575.   DOI   ScienceOn
5 Schafer, A., R. Konrad, T. Kuhnigk, P. Kampfer, H. Hertel, and H. Konig. 1996. Hemicellulose-degrading bacteria and yeasts from the termite gut. J. Appl. Bacteriol. 80, 471-478.   DOI
6 Scharf, M.E. and A. Tartar. 2008. Termite digestomes as sources for novel lignocellulases. Biofuels Bioprod. Bioref. 2, 540-552.   DOI
7 Thomson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W; improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.   DOI   ScienceOn
8 Schmitz, G. and V. Braun. 1985. Cell-bound and secreted proteases of Serratia marcescens. J. Bacteriol. 161, 1002-1009.
9 Schmitz, G. and V. Braun. 1985. Cell-bound and secreted proteases of Serratia marcescens. J. Bacteriol. 161, 1002-1009.
10 Sweetman, H.L. 1958. The principles of biological control, p. 560. Wm. C. Brown Company, Iowa, USA.
11 Thomson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W; improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.   DOI   ScienceOn
12 Choi, B.R., S.W. Lee, Y.H. Song, and J.K. Yoo. 2005. Effect of sublethal doses of imidacloprid on the green peach aphid, Myzus persicae. Kor. J. Pestic. Sci. 9, 374-378.
13 Bae, K.S. and H.Y. Park. 2004. Biochemical characterization of an extracellular protease in Serratia proteamaculans isolated from a spider. Kor. J. Microbiol. 40, 269-274.
14 Bersanetti, P., H.Y. Park, K.S. Bae, K.H. Son, D.H. Shin, I.Y. Hirata, M.A. Juliano, A.K. Carmona, and L. Juliano. 2005. Characterization of arazyme, and exocellular metalloprotease isolated from Serratia proteamaculans culture medium. Enzyme Microb. Technol. 37, 574-581.   DOI   ScienceOn
15 Breznak, J.A. 1982. Intestinal microbiota of termites and other xylophaguous insects. Annu. Rev. Microbiol. 36, 323-343.   DOI   ScienceOn
16 Breznak, J.A. and A. Brune. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39, 453-487.   DOI   ScienceOn
17 Chesneau, O., A. Morvan, S. Aubert, and N. El Solh. 2000. The value of rRNA gene restriction site polymorphism analysis for delineating taxa in the genus Staphylococcus. Int. J. Syst. Evol. Microbiol. 50, 689-697.   DOI   ScienceOn
18 Gillespie, B.E., S.I. Headrick, S. Boonyayatra, and S.P. Oliver. 2009. Prevalence and persistence of coagulase-negative Staphylococcus species in three dairy research herds. Vet. Microbiol. 134, 65-72.   DOI   ScienceOn
19 Grkovic, S., T.R. Glare, T.A. Jackson, and G.E. Corbett. 1995. Genes essential for amber disease in grass grubs are located on the large plasmid found in Serratia entomopila and Serratia proteamaculans. Appl. Environ. Microbiol. 61, 2218-2223.
20 Hagen, K.S. 1962. Biology and ecology of predaceous Coccinellidae. Annu. Rev. Entomol. 7, 289-326.   DOI   ScienceOn
21 Hines, D.A., P.N. Saurugger, G.M. Ihler, and M.J. Benedik. 1988. Genetic analysis of extracellular proteins of Serratia marcescens. J. Bacteriol. 170, 4141-4146.   DOI
22 Hodek, I. and A. Honek. 1996. Ecology of Coccinellidae, pp. 367-371. Kluwer Academic Publishers, Boston, London.
23 Iperti, G. 1999. Biodiversity of predacious coccinellidae in relation to bioindication and economic importance. Agricul. Ecosys. Environ. 74, 323-342.   DOI   ScienceOn
24 Kwak, J., D.H. Lee, Y.D. Park, S.B. Kim, J.S. Maeng, H.W. Oh, H.Y. Park, and K.S. Bae. 2006. Polyphasic assignment of a highly proteolytic bacterium to Serratia proteamaculans. J. Microbiol. Biotechnol. 16, 1537-1543.
25 Kim, G.H. and Y.S. Lee. 1999. Selective toxicity of aphicides to the predator Harmonia axyridis (Coleoptera: Coccinellidae) and Myzus persicae (Homoptera: Aphididae). Korean J. Pest. Sci. 3, 84-89.
26 Kim, K.D., D.S. Park, D.H. Shin, B.N. Han, H.W. Oh, Y.N. Youn, and H.Y. Park. 2006. Characterization of a ligninase producing strain, Serratia marcescens HY-5 isolated from Sympetrum depressiusculum. Korean J. Appl. Entomol. 45, 301-307.
27 Koch, R.L. 2003. The multicolored asian ladybeetle, Harmonia axyridis: a review of its biology, uses in biological control, and non-target impacts. J. Insect Sci. 3, 1-16.   DOI
28 Kwok, A.Y. and A.W. Chow. 2003. Phylogenetic study of Staphylococcus and Macrococcus species based on partial hsp60 gene sequences. Int. J. Syst. Evol. Microbiol. 53, 87-92.   DOI   ScienceOn
29 Moon, E.Y., H.W. Oh, P.J. Maeng, and K.S. Bae. 2001. Identification of enteric bacteria from Nephila clavata. Kor. J. Microbiol. 37, 1-8.
30 Park, K.T. 2001. Insect resources, p. 101. Academybook.
31 Roy, H. and E. Wajnberg. 2008. From biological control to invasion: the ladybird Harmonia axyridis as a model species. Biocontrol. 53, 1-4.   DOI
32 Park, K.T. and Y.C. Park. 1994. Survey on the aphidivous predators for biological control agents. RDA J. Agri. Sci. 36, 109-118.
33 Park, J.S., K.S. Whang, and J.S. Cheon. 2005. Procedure of microbial classification and identification, pp. 58-103. World Science Korea.