Browse > Article
http://dx.doi.org/10.5187/jast.2020.62.2.239

Difference of gut microbiota composition based on the body condition scores in dogs  

Chun, Ju Lan (National Institute of Animal Science, Rural Development Administration)
Ji, Sang Yun (National Institute of Animal Science, Rural Development Administration)
Lee, Sung Dae (National Institute of Animal Science, Rural Development Administration)
Lee, Yoo Kyung (National Institute of Animal Science, Rural Development Administration)
Kim, Byeonghyeon (National Institute of Animal Science, Rural Development Administration)
Kim, Ki Hyun (National Institute of Animal Science, Rural Development Administration)
Publication Information
Journal of Animal Science and Technology / v.62, no.2, 2020 , pp. 239-246 More about this Journal
Abstract
Microorganism residing in the gut has been known to have important roles in the animal body. Microbes and host microenvironment are highly related with host's health including energy metabolism and immune system. Moreover, it reported that gut microbiome is correlated with diseases like obesity in human and dogs. There have been many studies to identify and characterize microbes and their genes in human body. However, there was little information of microbiome in companion animals. Here, we investigated microbiota communities in feaces from twenty - four Beagles (aged 2 years old) and analyzed the taxonomy profile using metagenomics to study the difference among gut microbiome based on body condition score (BCS). gDNA was isolated from feaces, sequenced and clustered. Taxonomy profiling was performed based on the NCBI database. BCS was evaluated once a week according to the description provided by World Small Animal Veterinary Association. Firmicutes phylum was the most abundant followed by Bacteroidetes, Fusobacteria, Proteobacteria and Actinobacteria. That main microbiota in gut were differently distributed based on the BCS. Fusobacteria has been known to be associated with colon cancer in human. Interestingly, Fusobacteria was in the third level from the top in healthy dog's gut microbiome. In addition, Fusobacteria was especially higher in overweight dogs which had 6 scales of BCS. Species Fusobacterium perfoetens was also more abundant when dogs were in BCS 6. It implied that F. perfoetens would be positively related with overweight in dogs. These finding would contribute to further studies of gut microbiome and their functions to improve dog's diets and health condition.
Keywords
Dog; Fusobacteria; Gut microbiota; Metagenomic analysis; Overweight; Taxonomic profile;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hullar MAJ, Lampe JW, Torok-Storb BJ, Harkey MA. The canine gut microbiome is associated with higher risk of gastric dilatation-volvulus and high risk genetic variants of the immune system. PLoS One. 2018;13:e0197686.   DOI
2 Sheehan D, Shanahan F. The gut microbiota in inflammatory bowel disease. Gastroenterol Clin N Am. 2017;46:143-54.   DOI
3 Moon CD, Young W, Maclean PH, Cookson AL, Bermingham EN. Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. Microbiologyopen. 2018;7:e00677.   DOI
4 Hu HJ, Park SG, Jang HB, Choi MK, Park KH, Kang JH, et al. Obesity alters the microbial community profile in Korean adolescents. PLoS One. 2015;10:e0134333.   DOI
5 Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. 2006;444:1022-23.   DOI
6 Deng P, Swanson KS. Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges. Br J Nutr. 2015;113:S6-17.   DOI
7 Hampp EG, Scott DB, Wyckoff RW. Morphological characteristics of oral fusobacteria as revealed by the electron microscope. J Bacteriol. 1960;79:716-28.   DOI
8 Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299-306.   DOI
9 Gao R, Gao Z, Huang L, Qin H. Gut microbiota and colorectal cancer. Eur J Clin Microbiol Infect Dis. 2017;36:757-69.   DOI
10 Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy. Nat Rev. 2017;17:271-85.   DOI
11 Arane K, Goldman RD. Fusobacterium infections in children. Can Fam Physician. 2016;62:813-4.
12 Robrish SA, Oliver C, Thompson J. Sugar metabolism by fusobacteria: regulation of transport, phosphorylation, and polymer formation by Fusobacterium mortiferum ATCC 25557. Infect Immun. 1991;59:4547-54.   DOI
13 Conrads G, Claros MC, Citron DM, Tyrrell KL, Merriam V, Goldstein EJ. 16S-23S rDNA internal transcribed spacer sequences for analysis of the phylogenetic relationships among species of the genus Fusobacterium. Int J Syst Evol Microbiol. 2002;52:493-9.   DOI
14 Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor Gpr41. Proc Natl Acad Sci USA. 2008;105:16767-72.   DOI
15 Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005;102:11070-5.   DOI
16 Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23:859-68.   DOI
17 den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325-40.   DOI
18 Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.   DOI
19 Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The shortchain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611.   DOI
20 Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027-31.   DOI
21 Mentula S, Harmoinen J, Heikkila M, Westermarck E, Rautio M, Huovinen P, et al. Comparison between cultured small-intestinal and fecal microbiotas in beagle dogs. Appl Environ Microbiol. 2005;71:4169-75.   DOI
22 Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18:190-5.   DOI
23 Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761-72.   DOI
24 German AJ, Day MJ, Ruaux CG, Steiner JM, Williams DA, Hall EJ. Comparison of direct and indirect tests for small intestinal bacterial overgrowth and antibiotic-responsive diarrhea in dogs. J Vet Intern Med. 2003;17:33-43.   DOI
25 Coelho LP, Kultima JR, Costea PI, Fournier C, Pan Y, Czarnecki-Maulden G, et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome. 2018;6:72.   DOI
26 Li Q, Lauber CL, Czarnecki-Maulden G, Pan Y, Hannah SS. Effects of the dietary protein and carbohydrate ratio on gut microbiomes in dogs of different body conditions. mBio. 2017;8:e01703-16.
27 MacDonald ML, Rogers QR, Morris JG. Nutrition of the domestic cat, a mammalian carnivore. Ann Rev Nutr. 1984;4:521-62.   DOI
28 vonHoldt BM, Pollinger JP, Lohmueller KE, Han E, Parker HG, Quignon P, et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature. 2010;464:898-902.   DOI
29 Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.   DOI