Browse > Article
http://dx.doi.org/10.4014/jmb.1512.12017

A Detrimental Role of Immunosuppressive Drug, Dexamethasone, During Clostridium difficile Infection in Association with a Gastrointestinal Microbial Shift  

Kim, Hyeun Bum (Department of Infectious Disease and Global Health, Tufts University)
Wang, Yuankai (Department of Infectious Disease and Global Health, Tufts University)
Sun, Xingmin (Department of Molecular Medicine, Morsani College of Medicine, University of South Florida)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.3, 2016 , pp. 567-571 More about this Journal
Abstract
We investigated the increased risk of Clostridium difficile infection (CDI) caused by the combined use of antibiotics and an immunosuppressive drug in a mouse model. Our data showed that an approximate return to pretreatment conditions of gut microbiota occurred within days after cessation of the antibiotic treatment, whereas the recovery of gut microbiota was delayed with the combined treatment of antibiotics and dexamethasone, leading to an increased severity of CDI. An alteration of gut microbiota is a key player in CDI. Therefore, our data implied that immunosuppressive drugs can increase the risk of CDI through the delayed recovery of altered gut microbiota.
Keywords
Microbiota; Clostridium difficile infection; antibiotics; immunosuppressive drug; gut;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. 2005. Host-bacterial mutualism in the human intestine. Science 307: 1915-1920.   DOI
2 Berg RD. 1996. The indigenous gastrointestinal microflora. Trends Microbiol. 4: 430-435.   DOI
3 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336.   DOI
4 Chen X, Katchar K, Goldsmith JD, Nanthakumar N, Cheknis A, Gerding DN, et al. 2008. A mouse model of Clostridium difficile-associated disease. Gastroenterology 135: 1984-1992.   DOI
5 Das R, Feuerstadt P, Brandt LJ. 2010. Glucocorticoids are associated with increased risk of short-term mortality in hospitalized patients with Clostridium difficile-associated disease. Am. J. Gastroenterol. 105: 2040-2049.   DOI
6 Kachrimanidou M, Malisiovas N. 2011. Clostridium difficile infection: a comprehensive review. Crit. Rev. Microbiol. 37: 178-187.   DOI
7 De Cruz P, Kang S, Wagner J, Buckley M, Sim WH, Prideaux L, et al. 2015. Association between specific mucosa-associated microbiota in Crohn's disease at the time of resection and subsequent disease recurrence: a pilot study. J. Gastroenterol. Hepatol. 30: 268-278.   DOI
8 De La Cochetiere MF, Durand T, Lepage P, Bourreille A, Galmiche JP, Dore J. 2005. Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J. Clin. Microbiol. 43: 5588-5592.   DOI
9 Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200.   DOI
10 Kelly CP. 2012. Current strategies for management of initial Clostridium difficile infection. J. Hosp. Med. 7: S5-S10.   DOI
11 Killgore G, Thompson A, Johnson S, Brazier J, Kuijper E, Pepin J, et al. 2008 Comparison of seven techniques for typing international epidemic strains of Clostridium difficile: restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing. J. Clin. Microbiol. 46: 431-437.   DOI
12 Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, et al. 2012. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proc. Natl. Acad. Sci. USA 109: 15485-15490.   DOI
13 Kim HB, Isaacson RE. 2015. The pig gut microbial diversity: understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet. Microbiol. 177: 242-251.   DOI
14 Owens RC Jr, Donskey CJ, Gaynes RP, Loo VG, Muto CA. 2008. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin. Infect. Dis. 46: S19-S31.   DOI
15 Perez J, Springthorpe VS, Sattar SA. 2011. Clospore: a liquid medium for producing high titers of semi-purified spores of Clostridium difficile. J. AOAC Int. 94: 618-626.
16 Kim HB, Zhang Q, Sun X, Beamer G, Wang Y, Tzipori S. 2014. Beneficial effect of oral tigecycline treatment on Clostridium difficile infection in gnotobiotic piglets. Antimicrob. Agents Chemother. 58: 7560-7564.   DOI
17 Lode H, Von der Hoh N, Ziege S, Borner K, Nord CE. 2001. Ecological effects of linezolid versus amoxicillin/clavulanic acid on the normal intestinal microflora. Scand. J. Infect. Dis. 33: 899-903.   DOI
18 Renggaman A, Choi HL, Sudiarto SI, Alasaarela L, Nam OS. 2015. Development of pig welfare assessment protocol integrating animal-, environment-, and management-based measures. J. Anim. Sci. Technol. 57: 1.   DOI
19 Riboulet-Bisson E, Sturme MH, Jeffery IB, O’Donnell MM, Neville BA, Forde BM, et al. 2012. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota. PLoS One 7: e31113.   DOI
20 Schloss PD, Larget BR, Handelsman J. 2004. Integration of microbial ecology and statistics: a test to compare gene libraries. Appl. Environ. Microbiol. 70: 5485-5492.   DOI
21 Sorg JA, Sonenshein AL. 2010. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J. Bacteriol. 192: 4983-4990.   DOI
22 Steele J, Feng H, Parry N, Tzipori S. 2010. Piglet models of acute or chronic Clostridium difficile illness. J. Infect. Dis. 201: 428-434.   DOI
23 Wang YK, Yan YX, Kim HB, Ju X, Zhao S, Zhang K, et al. 2015. A chimeric protein comprising the glucosyltransferase and cysteine proteinase domains of toxin B and the receptor binding domain of toxin A induces protective immunity against Clostridium difficile infection in mice and hamsters. Hum. Vaccin. Immunother. 11: 2215-2222.   DOI
24 Zhang Q, Widmer G, Tzipori S. 2013. Apig model of the human gastrointestinal tract. Gut Microbes 4: 193-200.   DOI
25 Stuck AE, Minder CE, Frey FJ. 1989. Risk of infectious complications in patients taking glucocorticosteroids. Rev. Infect. Dis. 11: 954-963.   DOI
26 Sun X, Wang H, Zhang Y, Chen K, Davis B, Feng H. 2011. Mouse relapse model of Clostridium difficile infection. Infect. Immun. 79: 2856-2864.   DOI