• 제목/요약/키워드: growth function

검색결과 3,052건 처리시간 0.035초

Selection of a Predictive Coverage Growth Function

  • Park, Joong-Yang;Lee, Gye-Min
    • Communications for Statistical Applications and Methods
    • /
    • 제17권6호
    • /
    • pp.909-916
    • /
    • 2010
  • A trend in software reliability engineering is to take into account the coverage growth behavior during testing. A coverage growth function that represents the coverage growth behavior is an essential factor in software reliability models. When multiple competitive coverage growth functions are available, there is a need for a criterion to select the best coverage growth functions. This paper proposes a selection criterion based on the prediction error. The conditional coverage growth function is introduced for predicting future coverage growth. Then the sum of the squares of the prediction error is defined and used for selecting the best coverage growth function.

Estimation of Coverage Growth Functions

  • Park, Joong-Yang;Lee, Gye-Min;Kim, Seo-Yeong
    • Communications for Statistical Applications and Methods
    • /
    • 제18권5호
    • /
    • pp.667-674
    • /
    • 2011
  • A recent trend in software reliability engineering accounts for the coverage growth behavior during testing. The coverage growth function (representing the coverage growth behavior) has become an essential component of software reliability models. Application of a coverage growth function requires the estimation of the coverage growth function. This paper considers the problem of estimating the coverage growth function. The existing maximum likelihood method is reviewed and corrected. A method of minimizing the sum of squares of the standardized prediction error is proposed for situations where the maximum likelihood method is not applicable.

SLOWLY CHANGING FUNCTION ORIENTED GROWTH MEASUREMENT OF DIFFERENTIAL POLYNOMIAL AND DIFFERENTIAL MONOMIAL

  • Biswas, Tanmay
    • Korean Journal of Mathematics
    • /
    • 제27권1호
    • /
    • pp.17-51
    • /
    • 2019
  • In the paper we establish some new results depending on the comparative growth properties of composite entire and meromorphic functions using relative $_pL^*$-order, relative $_pL^*$-lower order and differential monomials, differential polynomials generated by one of the factors.

Diphasic Analysis of Growth in Japanese Quail

  • Ozkan, Muhip
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권9호
    • /
    • pp.1281-1285
    • /
    • 2004
  • A line of Japanese quail selected for increased body weight for 15 generations (C) and an unselected control line (K) were used to examine the impact of selection for body weight on the growth curve of Japanese quail. In addition, the effect of sex on the growth curve in each line was also studied, namely females of C (CF), males of C (CM), females of K (KF) and males of K (KM). The monophasic and diphasic growth models were studied for adequacy in describing growth curves of quail in both sexes of the C and K lines. The monophasic function provided almost the same growth rate for both sexes in both lines. However, the growth rates calculated by means of the diphasic function differed between sexes for both lines, except for those calculated for C during the second growth phase. While there were 2-3 days difference between sexes in age at maximum gain in both lines with a monophasic model, the difference between sexes in the age at maximum gain in both lines became greater according to the diphasic model. There were 5 and 7 days difference between sexes in the age at maximum gain in line C for the first and second growth phases, respectively. A difference between sexes of 18 and 11 days in the age at maximum gain for the first and second phases, respectively, was estimated for line K when the diphasic function was fitted. The use of diphasic functions provides more detailed information on growth patterns. The results showed that the use of the diphasic function was better because it provided greater insights into understanding the biology of growth.

Comparison of Multilevel Growth Models for Respiratory Function in Patients with Tracheostomy and Stroke using Cervical Range of Motion Training

  • Kim, SoHyun;Cho, SungHyoun
    • Physical Therapy Rehabilitation Science
    • /
    • 제10권3호
    • /
    • pp.328-336
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the effect of cervical range of motion training on the change in respiratory function growth rate at the group and individual level in stroke patients and stroke patients with tracheostomy tube. Design: A Multilevel Growth Model Methods: 8 general stroke patients and 6 stroke patients who had a tracheostomy tube inserted were subjected to cervical range of motion training 3 times a week for 4 weeks. Force vital capacity (FVC), Forced expiratory volume in the first second (FEV1), Forced expiration ratio (FEV1/FVC) and Manual assist peak cough flow (MPCF) were measured. Data were analyzed using descriptive statistics and multilevel analysis with HLM 8.0. Results: A significant difference was found in the respiratory function analysis growth rate of the entire group (p<0.05), and two groups were added to the research model. The linear growth rate of respiratory function in patients with general stroke increased with the exception of FEV1/FVC (p<0.05). Stroke patients with tracheostomy tube showed a decreasing pattern except for FVC. In particular, MPCF showed a significantly decreased result (p<0.05). Conclusions: This study found that the maintenance of improved respiratory function in stroke patients with tracheostomy tube decreased over time. However, cervical range of motion training is still a useful method for respiratory function in general stroke patients and stroke patients with tracheostomy tube.

마케팅자료에서 특성점들을 이용한 군집방법 (Clustering Method Using Characteristic Points with Marketing Data)

  • 문숙경;김우성
    • 품질경영학회지
    • /
    • 제32권4호
    • /
    • pp.265-273
    • /
    • 2004
  • We got the growth distance curve by spline smoothing method with observed marketing data and the growth velocity curve by the derivation of the growth distance curve. Using this growth velocity curve, we defined the several characteristic points which describe the variation of marketing data. In this paper, to specify several patterns of marketing data, we suggested characteristic function by using these characteristic points. In addition, we applied characteristic function to the seventeen brands of electric home products data.

RELATIVE (p, q, t)L-TH ORDER AND RELATIVE (p, q, t)L-TH TYPE BASED SOME GROWTH ASPECTS OF COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS

  • Biswas, Tanmay
    • 호남수학학술지
    • /
    • 제41권3호
    • /
    • pp.463-487
    • /
    • 2019
  • In the paper we establish some new results depending on the comparative growth properties of composite entire and meromorphic functions using relative (p, q, t)L-th order and relative (p, q, t)L-th type of entire and meromorphic function with respect to another entire function.

GROWTH ANALYSIS OF COMPOSITE ENTIRE FUNCTIONS FROM THE VIEW POINT OF RELATIVE (p, q)-TH ORDER

  • Biswas, Tanmay
    • Korean Journal of Mathematics
    • /
    • 제26권3호
    • /
    • pp.405-424
    • /
    • 2018
  • In this paper we study some comparative growth properties of composite entire functions on the basis of relative (p, q)-th order and relative (p, q)-th lower order of entire function with respect to another entire function where p and q are any two positive integers.

Mapping the Spatial Distribution of IRG Growth Based on UAV

  • Na, Sang-Il;Park, Chan-Won;Kim, Young-Jin;Lee, Kyung-Do
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.495-502
    • /
    • 2016
  • Italian Ryegrass (IRG), which is known as high yielding and the highest quality winter annual forage crop, is grown in mid-south area in Korea. The objective of this study was to evaluate the use of unmanned aerial vehicle (UAV) for the monitoring IRG growth. Unmanned aerial vehicle imagery obtained from middle March to late May in Nonsan, Chungcheongnam-do. Unmanned aerial vehicle imagery corrected geometrically and atmospherically to calculate normalized difference vegetation index (NDVI). We analyzed the relationships between $NDVI_{UAV}$ of IRG and biophysical measurements such as plant height, fresh weight, and dry weight over an entire IRG growth period. The similar trend between $NDVI_{UAV}$ and growth parameters was shown. Correlation analysis between $NDVI_{UAV}$ and IRG growth parameters revealed that $NDVI_{UAV}$ was highly correlated with fresh weight (r=0.988), plant height (r=0.925), and dry weight (r=0.853). According to the relationship among growth parameters and $NDVI_{UAV}$, the temporal variation of $NDVI_{UAV}$ was significant to interpret IRG growth. Four different regression models, such as (1) Linear regression function, (2) Linear regression through the origin, (3) Power function, and (4) Logistic function were developed to evaluate the relationship between temporal $NDVI_{UAV}$ and measured IRG growth parameters. The power function provided higher accurate results to predict growth parameters than linear or logistic functions using coefficient of determination. The spatial distribution map of IRG growth was in strong agreement with the field measurements in terms of geographical variation and relative numerical values when $NDVI_{UAV}$ was applied to power function. From these results, $NDVI_{UAV}$ can be used as a new tool for monitoring IRG growth.