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Abstract
A recent trend in software reliability engineering accounts for the coverage growth behavior during testing.

The coverage growth function (representing the coverage growth behavior) has become an essential component
of software reliability models. Application of a coverage growth function requires the estimation of the coverage
growth function. This paper considers the problem of estimating the coverage growth function. The existing
maximum likelihood method is reviewed and corrected. A method of minimizing the sum of squares of the
standardized prediction error is proposed for situations where the maximum likelihood method is not applicable.

Keywords: Construct, coverage, coverage growth function, maximum likelihood, prediction error,
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1. Introduction

Software systems have become critical components of computer systems. Failures in a software sys-
tem can cause severe consequences; therefore, software developers and users are concerned about the
quality of software systems, especially reliability. The reliability of a software system is improved
only when faults resident in the software system are detected and removed. Software systems are
usually tested for fault detection and removal before they are released because software testing is a
key activity to improve software reliability.

Theoretically it is impossible to execute all the possible inputs of a software system under testing.
Consequently, it is nearly impossible to detect and remove all the faults in a software system. The
developed software system is to be released or delivered at an appropriate time. This demands that
software testers perform testing activity for a reasonable amount of time. Software developers usually
determine when to stop testing based on the estimates of reliability measures.

Many software reliability growth models(SRGMs) have been proposed and applied in practice for
the estimation of software reliability measures (Musa et al., 1987; Lyu, 1996; Musa, 1999). Most
SRGMs describe the relationship between a reliability measure and testing time. Such a relation-
ship is obtained by modeling the fault detection and removal process during testing; however, it was
recognized that the testing time was not enough to express the fault detection and removal process.
Attempts to integrate coverage information into SRGMs have been made by Gokhale et al. (1996),
Malaiya et al. (2002), Pham and Zhang (2003), Park and Fujiwara (2006), Crespo et al. (2008, 2009),
and Park et al. (2008b). Each coverage-based SRGM involves a coverage growth function(CGF), that
describes the coverage growth process during testing. The performance of such SRGMs depends on
how closely its CGF represents the actual coverage growth phenomenon. Recently, a class of CGFs
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for software reliability modeling was proposed by Park et al. (2007, 2008a). Three specific CGFs of
the class have been empirically validated.

Application of CGFs requires the estimation of the CGFs. This paper considers the problem of
estimating the CGFs. Section 2 briefly reviews the CGFs proposed by Park et al. (2007, 2008a). The
existing maximum likelihood(ML) method is reviewed and corrected in Section 3. Since the coverage
data sets reported by the previous studies do not provide all the information necessary for the ML
method, the method minimizing the sum of squares of the standardized prediction error is proposed
as an alternative in Section 4. Section 5 presents numerical examples of the alternative estimation
method.

2. Coverage and Coverage Growth Function

Let us begin by defining the coverage and CGF. A software system can be considered as a collection of
constructs, where a construct is a basic building element of a software system. Some usual constructs
are statements, blocks, branches, c-uses and p-uses. Let M be the set of constructs of the software
system under testing. Then M is the software system itself. The set of constructs executed up to t
testing time is denoted by M(t). One metric for measuring the thoroughness and/or the progress of
the testing is the coverage defined as C(t) = |M(t) | / |M |, where | · | is the cardinality of a set. Since
test cases are selected randomly from the inputs domain according to the given testing profile, M(t)
and C(t) are stochastic processes. CGF c(t) is defined as the expected value of C(t), i.e., the expected
proportion of constructs executed by t.

Park et al. (2007) considered the case where the testing time is discrete and modeled the coverage
growth process under the following assumptions:

(i) Constructs in M are executed independently.

(ii) The execution probability p of a construct follows a distribution with cdf F(p) and pdf f (p).

Assumption (ii) reflects that constructs in M may have different execution probabilities. Let T denote
the time to execution of a construct. Due to Assumption (i), the time to execution of a construct with
execution probability p follows a geometric distribution. Therefore the probability that a construct is
executed up to t testing time is obtained as

π(t) = Pr (T ≤ t) =
∫ 1

0
Pr (T ≤ t | p) f (p) dp =

∫ 1

0

[
1 − (1 − p)t

]
f (p) dp. (2.1)

Specifically, if F(p) is a beta distribution with parameters α and β,

πbeta(t) = 1 − B(α, β + t)
B(α, β)

, (2.2)

where B(α, β) is the beta function.
Park et al. (2008a) dervied π(t) for the continuous testing time by replacing Assumptions (ii) with

(ii)
′

The execution rate λ of a construct follows a distribution with cdf G(λ) and pdf g(λ).

Then the time to execution of a construct with execution rate λ is exponentially distributed with
parameter λ. Therefore,

π(t) = Pr (T ≤ t) =
∫ ∞

0
Pr (T ≤ t| λ) g(p) dp =

∫ ∞

0

[
1 − e−λt

]
g(p) dp. (2.3)
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The gamma and lognormal distributions have been considered for G(λ). The corresponding π(t)’s are
obtained as

πgamma(t) = 1 − (1 + βt)−α (2.4)

for the gamma distribution with parameters α and β and

πlognormal(t) = 1 −
∫ ∞

0
e−λt e−

(ln λ−µ)2

2σ2

λσ
√

2π
dλ (2.5)

for the lognormal distribution with parameters µ and σ.
The probability that a construct is executed up to t, π(t), can be interpreted as the expected pro-

portion of constructs executed up to t. Thus π(t)’s were proposed as plausible CGFs. It was further
shown that π(t)’s could be used irrespective of the continuity of the testing time.

3. Maximum Likelihood Estimation of CGF

This section considers ML estimation of the CGFs reviewed in the previous section. Let us first present
the existing ML estimation procedure. Suppose that a coverage growth process was observed at ti for
i = 1, 2, . . . , n. Let mti and cti be values of |M(t) | and C(t) measured at ti. The observed increments
of |M(t) | and C(t) during (ti−1, ti] are then expressed as xti = mti − mti−1 and cti − cti−1 = xti |M|−1,
where mt0 = 0, ct0 = 0 and t0 = 0.

Now suppose that we want to predict the coverage at some t′ > tn when the corresponding CGF is
given by π(t). Coverage growth occurs only when some constructs in M−M(tn) are executed. It should
be noted that the distribution of execution probability over M − M(tn) is not F(p) any more. In order
to describe the coverage growth process after tn, we need to derive the distribution of the execution
probability of the constructs in M − M(tn). A similar argument can be made for the execution rate.
First, let us consider the case where the testing time is discrete. Since the distribution of the execution
probability of a construct in M − M(tn) is

f (p | T > tn) =
[
1 − Pr (T ≤ tn | p)

]
f (p)

1 − π (tn)
, (3.1)

the probability that a construct in M−M(tn) is executed by t additional testing time after tn is obtained
as

π (t | tn) =
∫ 1

0
Pr (T ≤ t | p) f (p |T > tn) dp =

π (tn + t) − π (tn)
1 − π (tn)

. (3.2)

It can be verified that

π (t | tn) =
[π (ti) − π (ti−1)]

[1 − π (ti−1)]
(3.3)

also holds for the continuous testing time.
Since a coverage growth process is repeatedly observed at different times, the observed values

mti ’s and cti ’s are not independent. That is, the coverage growth behavior during (ti−1, ti] depends
on mti−1 and the conditional probability that a construct not executed up to ti−1 is executed up to ti.
The increment of |M(t)| during (ti−1, ti] has the binomial distribution with parameters |M| − mti−1 and
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π (ti − ti−1 | ti). Therefore, for given cti ’s and ti’s, the likelihood function and log likelihood function
are obtained as

L =
n∏

i=1

(
|M| − mti−1

xti

) [
π (ti) − π (ti−1)

1 − π (ti−1)

]xti
[

1 − π (ti)
1 − π (ti−1)

]|M|−mti

=
|M|!

xti ! · · · xtn !
(|M| − mtn

)
!
·

n∏
i=1

[π (ti) − π (ti−1)]xti · [1 − π (tn)]|M|−mtn

and

ln L = K +
n∑

i=1

xti ln (π (ti) − π (ti−1)) +
(|M| − mtn

)
ln (1 − π (tn))

= K + |M| ·
 n∑

i=1

(cti − cti−1 ) ln (π (ti) − π (ti−1)) +
(
1 − ctn

)
ln (1 − π (tn))


= K + |M| · L∗, (3.4)

where K is a constant independent of parameters to be estimated.
However, a slight modification is made for a practical reason. Generally, 100% coverage can

rarely be achieved because of the presence of infeasible constructs and constructs with an extremely
small execution probability or execution rate. The upper bound for each coverage metric is imposed
on π(t), that is,

π̃(t) = cmax π(t), (3.5)

where cmax is the maximum achievable coverage. It was shown that π̃(t) worked well for various real
data sets. ML estimates of π̃(t) have been obtained by maximizing L∗ after replacing π(t) of Equation
(3.4) with π̃(t).

The ML estimation procedure briefly reviewed above is to be corrected. First, note that cmax was
introduced due to the infeasible constructs in M. Denote the set of all the feasible constructs in M by
MF . Coverage growth occurs only when constructs in MF are executed during testing. This implies
that F(p) and G(λ) are to be considered as distributions over MF , not over M. Therefore, π(t) is the
probability that a construct in MF , not in M, is executed up to t.

Second, coverages are measured relative to |M|, not |MF |. Since cti = |M (ti) |/|M|, it is not rea-
sonable to relate cti ’s to π(t). cti/cmax’s should be related to π(t), where cmax = |MF |/|M|. Practically,
M and |M| are well defined and known at the beginning of testing, but MF is not. Thus cmax is to be
estimated.

From the above discussion the increment of |M(t)| during (ti−1, ti], M (ti)−M (ti−1) = |M| (cti − cti−1

)
,

follows the binomial distribution with parameters |MF | −mti−1 and π (ti − ti−1 | ti). The likelihood func-
tion is thus obtained as

L =
n∏

i=1

(
|MF | − mti−1

xti

) [
π (ti) − π (ti−1)

1 − π (ti−1)

]xti
[

1 − π (ti)
1 − π (ti−1)

]|MF |−mti

=
|MF |!

xt1 ! · · · xtn !
(|MF | − mtn

)
!
·

n∏
i=1

[π (ti) − π (ti−1)]xti · [1 − π (tn)]|MF |−mtn , (3.6)
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where xti = |M|
(
cti − cti−1

)
, |MF | − mti−1 = |M|

(
cmax − cti−1

)
and |MF | − mtn = |M|

(
cmax − ctn

)
. ML

estimates of cmax and the parameters of π(t) are to be computed by maximizing the likelihood function
(3.6). However, maximization of the likelihood function (3.6) is numerically very complex.

4. Minimum Sum of Squares of Prediction Error Estimation of CGF

As mentioned in the previous section, M is well defined at the beginning of testing. If |M| is available,
π(t)’s can be fitted to the observed coverage values cti ’s by ML method. Most studies on the coverage
growth process report the values of cti and ti but |M|. ML estimates cannot be computed when |M|
is not available. Alternative estimation methods are necessary for such situations. In this section we
define the prediction error and propose the estimation method optimizing the sum of squares of the
standardized prediction error.

Execution of the software system without the coverage increase does not help tester detect the
remaining faults. This results in the overestimation of reliability. In order for testers to decide whether
to stop testing, the coverage expected from additional testing should be predicted. Accurate prediction
of the future coverage is therefore an important problem. Suppose that testing was performed up to
ti−1 and the coverage was observed as cti−1 . Since π (ti − ti−1|ti−1) is the probability that a construct in
MF − M (ti−1) is executed up tp ti, the coverage at ti is predicted as

cti−1 +
(
cmax − cti−1

)
π (ti − ti−1 | ti−1) . (4.1)

Therefore, the corresponding prediction error is obtained as

cti − cti−1 −
(
cmax − cti−1

)
π (ti − ti−1 | ti−1) . (4.2)

Since the distribution of M (ti)−M (ti−1) = |M| (cti − cti−1 ) is the binomial distribution with parameters
MF − M (ti−1) and π (ti − ti−1 | ti−1), the sum of squares of the standardized prediction error divided by
|M| (SSPE)

n∑
i=1

[
cti − cti−1 −

(
cmax − cti−1

)
π (ti − ti−1 | ti−1)

]2(
cmax − cti−1

)
π (ti − ti−1 | ti−1) [1 − π (ti − ti−1 | ti−1)]

(4.3)

is a reasonable measure for the predictive ability of CGF π̃(t). An alternative to ML estimation we
suggest minimization of SSPE , which is especially useful when |M| is not available.

5. Numerical Examples

The first data set, DS1, was collected by Pasquini et al. (1996) from a configuration software for
an array of antennas developed by European Space Agency. It consists of 29 observations on the
number of detected faults, the number of executed test cases and 4 coverages. The 4 coverages are
block, branch, c-use, and p-use coverages. For the sake of brevity, we fit the three CGFs to block
and p-use coverages of DS1. Maximum likelihood estimates of CGFs are summarized in Table 1.
The fitted CGFs are plotted in Figure 1.The fitted π̃d

beta(t) and π̃c
gamma(t) are so close that they are

indistinguishable in Figure 1. All the three CGFs work well for DS2. The value of L∗ suggest as the
best model π̃c

gamma(t) for block coverage and π̃c
lognormal(t) for the p-use coverage.

The second data set, DS2, was collected, as a simulation of testing, by Gokhale and Mullen (2004)
with SHARPE(Symbolic Hierarchical Automated Reliability and Performance Evaluator) that solves
stochastic models of reliability. SHARPE contains 35,081 lines of C code and has a total of 373
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Table 1: Maximum likelihood estimates of CGFs fitted to 2 coverages of DS1
parameter π̃d

beta(t) π̃c
gamma(t) π̃c

lognormal(t)
cmax 0.8239 0.8205 0.8239

block α (µ) 0.5917 0.6596 −1.0189
coverage β (σ) 0.9186 1.0839 2.3032

SSPE 0.2520 0.2215 0.2566
cmax 0.6727 0.6723 0.6700

p-use α (µ) 0.7097 0.8385 −1.5880
coverage β (σ) 1.7664 0.4536 1.9965

SSPE 0.4145 0.3387 0.3452
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Figure 1: CGFs fitted to DS1: (left) block coverage, (right) p-use coverage

Table 2: Maximum likelihood estimates of CGFs for DS2
parameter π̃d

beta(t) π̃c
gamma(t) π̃c

lognormal(t)
cmax 1.0000 1.0000 0.9961
α (µ) 0.4662 0.4660 −3.2271
β (σ) 3.6027 0.2991 2.2470
SSPE 0.1033 0.1031 0.0350

functions. DS2 consists of block coverage values measured by applying 10 different sequences of 735
test cases; in addition, an average of 10 sequences is also reported. In this paper we fit the three CGFs
to the average block coverage of DS3. Maximum likelihood estimates are tabulated in Table 2. The
fitted CGFs are shown in Figure 2. It is apparent that π̃c

lognormal(t) is the best model for DS2.

6. Concluding Remarks

In this paper we proposed a class of continuous-time CGFs and showed that it is identical to the class
of discrete-time CGFs suggest by Park et al. (2007). Specifically, three CGFs of the class, π̃d

beta(t),
π̃c

gamma(t) and π̃c
lognormal(t), have been investigated by applying them to real data sets. In general,

coverage is assumed to grow exponentially. That is, coverage grows fast in the early phase of testing
and the coverage growth rate reduces as fast as the testing progresses. The data sets analyzed in
the previous section comply with this assumption. Fujiwara et al. (2005) and Fujiwara and Yamada
(2002) reported 4 data sets not supporting this assumption, These data sets, referred to as DS4-DS7
respectively, are plotted in Figure 1. Although ti is not described in detail in this paper, π̃d

beta(t),
π̃c

gamma(t) and π̃c
lognormal(t) does not work well for these data sets. That is, the CGFs proposed in this
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Figure 2: CGFs fitted to DS2.

paper are not appropriate for the data sets with non-exponential growth. It is therefore necessary to
develop new CGFs for the coverage growth phenomenon with non-exponential growth. Our future
research will be directed to this problem.
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