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Abstract

A trend in software reliability engineering is to take into account the coverage growth behavior during testing.
A coverage growth function that represents the coverage growth behavior is an essential factor in software relia-
bility models. When multiple competitive coverage growth functions are available, there is a need for a criterion
to select the best coverage growth functions. This paper proposes a selection criterion based on the prediction
error. The conditional coverage growth function is introduced for predicting future coverage growth. Then the
sum of the squares of the prediction error is defined and used for selecting the best coverage growth function.
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1. Introduction

Software systems are becoming critical components of computer systems. Failures in a software
system can cause severe consequences. Both software developers and users are concerned about the
quality of software systems, especially reliability. The reliability of a software system is improved
only by detecting and removing faults resident in the software system. Software systems are tested
for fault detection before they are released. Software testing is a key activity to improve software
reliability.

Theoretically, it is impossible to execute all the possible inputs of a software system under testing.
Consequently, it is nearly impossible to detect and remove all the faults in a software system. Devel-
oped software should be released at an appropriate time and demands software testers perform testing
activity in a reasonable amount of time. Software developers usually determine when to stop testing
and release the software system based on the estimates of reliability measures.

Many software reliability growth models(SRGMs) have been proposed and applied in practice for
the estimation of software reliability measures Musa et al. (1987), Lyu (1996) and Musa (1999). Most
SRGMs describe a relationship between a reliability measure and the testing time. Such a relationship
is obtained by modeling the fault detection and removal process during testing. However, it was
recognized that the testing time was insufficient to express the fault detection and removal process.
Attempts to integrate coverage information into SRGMs have been made by Gokhale et al. (1996),
Malaiya et al. (2002), Pham and Zhang (2003), Park and Fujiwara (2006), Crespo et al. (2008, 2009)
and Park er al. (2008b). Each coverage-based SRGM involves a coverage growth function(CGF) that
describes the coverage growth process during testing. The performance of such SRGMs depends on
how closely its CGF represents the actual coverage growth phenomenon. Recently, a class of CGFs
for software reliability modeling was proposed by Park er al. (2007, 2008a). Three specific CGFs of
the class have been empirically validated.
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When multiple competitive CGFs are available, it is necessary to select the best one. This paper
proposes a selection criterion based on predictability. Section 2 first describes the testing process and
then reviews the CGFs of Park ef al. (2007, 2008a). The conditional CGF for predicting the future
coverage growth is introduced in Section 3. Then the sum of squares of the prediction error is defined
and used as a selection criterion. The proposed selection criterion is applied to a real data set in
Section 4.

2. Testing Process and CGF

The reliability of a software system is defined as the probability that the software system operates
without failures for a specified time under a given usage environment. The set of all the possible
inputs of the software system under testing is called the input domain. The usage environment is
represented by a testing profile, which is a probability distribution over the input domain. Since
testing requires the execution of the software system, test cases are selected randomly from the input
domain according to the testing profile and then executed. Whenever a failure occurs, the failure
time is recorded and the fault that caused the failure is removed. Alternatively, the number of faults
detected up to some testing time points can be collected. Usually the cumulative execution time or
the number of executed test cases is recorded as the testing time. These two types of testing data are
respectively referred to as the failure time data and the fault count data. The traditional SRGMs are
statistical models for evaluating software reliability based on the two types of data.

A recent trend is to measure coverage values and augment them to the data set. Let us first define
the coverage and CGF. A software system can be considered as a collection of constructs, where a
construct is a basic building element of a software system. Some usual constructs are statements,
blocks, branches, c-uses and p-uses. Let M be the set of constructs of the software system under
testing. Then M is the software system itself. The set of constructs executed up to ¢ testing time is
denoted by M(#). One metric for measuring the thoroughness and/or the progress of the testing is the
coverage defined as C(f) = |M(¢)|/| M|, where | - | is the cardinality of a set. Since test cases are
selected randomly from the inputs domain according to the given testing profile, M(¢) and C(¢) are
stochastic processes. CGF c(¢) is defined as the expected value of C(?), i.e., the expected proportion
of constructs executed by z.

Park et al. (2007) considered the case where the testing time is discrete and modeled the coverage
growth process under the following assumptions:

(i) Constructs in M are executed independently,
(i) The execution probability p of a construct follows a distribution with cdf F(p) and pdf f(p).

Assumption (ii) reflects that constructs in M may have different execution probabilities. Let 7 denote
the time to execution of a construct. Due to Assumption (i), the time to execution of a construct with
execution probability p follows a geometric distribution. The probability that a construct is executed
up to ¢ testing time is obtained as

1 1
a(t)=Pr(T <1) = fo Pr(T <t|p) f(p)dp = fo [1=a-py]| fp)dp. @1

If F(p) is a beta distribution with parameters « and 3,

: B(a,B+1)

B+ 22
B(@.p) (22)

Tpeta(t) = 1
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where B(a, ) is the beta function. 71(¢) for the continuous testing time obtained in Park ef al. (2008a)
by replacing Assumption (ii) with

(i) The execution rate A of a construct follows a distribution with cdf G(1) and pdf g(1).

Then the time to execution of a construct with execution rate A is exponentially distributed. Similar
to the discrete testing time case, the probability that a construct is executed up to ¢ testing time is
computed as

n(t)=Pr(T <1) = f [1 -] s(p)dp. 2.3)
0
If G() follows a gamma distribution with parameters ¢ and S, then
Tgamma(t) = 1 = (1 + B~ 2.4

If G(1) follows a lognormal distribution with parameters y and o, then

e(n A—p)? 20

ﬂlognormal(t) =1- \[()‘ e /10-—\/?1' daA. 2.5)

Since () can be interpreted as the proportion of executed constructs up to z, m(f) was proposed
as a plausible CGF. However, a slight modification is required for a practical reason. Generally 100%
coverage can rarely be achieved because of the presence of infeasible constructs and constructs with
a negligible execution probability or execution rate. The upper bound is imposed on (),

T(t) = Cmax 7(1), (2.6)

where cax 18 the maximum achievable coverage. It was also shown that 77(¢)’s could be used as CGF
irrespective of the continuity of the testing time and worked well for various real data sets.

3. Conditional CGF and Prediction Error

Suppose that a coverage growth process was observed at ; for i = 1,2,...,n. Let ¢;, be values of C(¢)
measured at #;. Execution of the software system without the coverage increase does not help testers
detect the remaining faults. This results in the overestimation of reliability. In order to decide whether
we stop testing, we must evaluate the expected coverage increase from additional testing. Thus we
consider the problem of predicting the coverage at some ¢’ > t,, when the corresponding CGF is given
by 7(?).

Coverage growth occurs only when some constructs in M — M(t,) are executed. It should be
noted that the distribution of the execution probability over M — M(t,,) is not F(p) any more. In order
to describe the coverage growth process after ¢,, we need to derive the distribution of the execution
probability of the constructs in M — M(¢,). A similar argument can be made for the execution rate.

Let us first consider the case where the testing time is discrete. Since the distribution of the
execution probability over M — M(t,) is obtained as

[1-Pr(T <t,|p]f(p)

SfIT>1)= 1—7(,) s

3.1
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the probability that a construct in M — M(t,) is executed by ¢ additional testing time after ¢, is obtained
as

1 _
n(rm):f Pr(T <t1p) f(pIT > 1) dp = “n ¥ D=7t (3.2)
0 ]_ﬂ-(tn)

It can be verified that

e (t]ty) = %{t’;(” (3.3)

also holds for the continuous testing time.

Now suppose that we want to predict the future coverage at ¢,. The coverage at ¢, is observed as
¢;, and 7 (¢]¢,) works on M — M(t,), not M. The coverage at 1, + ¢ given that C (,,) = ¢;, is therefore
expected to be

C(tn + t|cln) =Cp, t (Cmax - Ct,,)”(t | tn) s (34)

where ¢ (1, + t|c,,) is called the conditional CGF. Note that c(r) = c (o + t|2) = 7(¢). Given that
C(ti-1) = ¢y, the coverage at t; can thus be predicted as ¢ (#;|¢;_,). The sum of squares of the
prediction error(SSPE) of CGF 7(¢) is defined as

n n

Dllen—cile )P =D lew =i = (ema — e )t = tiy 16iD] (3.5)

i=1 i=1

When multiple CGFs are available, it is reasonable to select the CGF giving the minimum SSPE as
the best CGF.

4. Application to a Real Data Set

It was empirically shown in Park et al. (2007, 2008a) that Tyeia (), Teamma () and Tiognormal () performed
well for various data sets and coverage metrics. In this section we illustrate the application of the
proposed selection method to a real data set recently reported by Crespo et al. (2008). The data
set consists of five coverage metrics, which are respectively all-nodes(NODES), all-arcs(ARCS), all-
potential-uses(PU), all-potential-uses/du(PUDU) and all-potential-du-paths(PDU). The testing time is
the number of executed test cases.

Theta(t); Wgamma(t) and Tiognormat (f) Were fitted to each coverage metric by the maximum Likeli-
hood(ML) method. Tyeta(?), Tgamma(?) and Tiggnormal (7) fitted to 4 coverage metrics were displayed in
Figure 1~5 for the sake of brevity. Figure 1~5 suggests that Tpeta(?), Tgamma(?) and Tiognorma (1) Work
fairly well for this data set. Besides the visual inspection of the fitted CGFs, we need an objective
numerical criterion to select the best CGF. The parameter estimates and the SSPE were computed and
shown in Table 1. Judging from the SSPE, we can conclude that Tiognormai () is the best CGF for all
the 5 coverage metrics.

Parameter cp,x plays an important role in evaluating the testing progress. Unlikely to the data
sets analyzed in Park ef al. (2007, 2008a), estimates of cy,x in Table 1 are quite different among the
fitted competitive CGFs. It is desirable to perform additional testing before the most predictive CGF
is chosen.
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Figure 1: Tpea (1), Toamma(t) and Tjpgnormai(t) fitted to the data reported by Crespo et al. (2008): NODES coverage
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Figure 2: Tpera (1), Tgamma(t) and Tiognorma(t) fitted to the data reported by Crespo et al. (2008): ARCS coverage
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Figure 3: Tpera(t), Woamma(t) and Tiognorma(t) fitted to the data reported by Crespo et al. (2008): PU coverage
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Figure 4: Tpe (1), Toamma(t) and Tiognorma(t) fitted to the data reported by Crespo et al. (2008): PUDU coverage
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Figure 5: Tpea (1), Teamma(t) and Tiognormai(t) fitted to the data reported by Crespo et al. (2008): PDU coverage.

Table 1: Maximum likelihood estimates and SSPE of the fitted CGFs.

Coverage metric

CGF Parameter NODES ARCS PU PUDU PDU
Comax 0.9994 1.0000 1.0000 1.0000 1.0000
Foel) @ 0.1263 0.0893 0.0602 0.0520 0.0307
cla B 0.2965 0.3586 0.3248 0.3105 0.4247
SSPE 0.0067 0.0065 0.0047 0.0034 0.0012
Cmax 0.9303 1.0000 1.0000 1.0000 1.0000
- @ 0.1344 0.0895 0.0604 0.0523 0.0307
Mgammal() B 14.6888 12.2138 17.9629 20.6918 9.8433
SSPE 0.0063 0.0060 0.0044 0.0031 0.0011
Cmax 0.7528 0.6861 0.7656 0.6930 0.3802
= - u -1.5827 -3.0686 ~5.9269 ~5.9500 -5.3736
lognormal o 3.4601 42167 6.6349 6.7491 5.2210
SSPE 0.0060 0.0055 0.0038 0.0028 0.0010

5. Conclusion

CGF is an essential component for modeling software reliability. When multiple competitive CGFs
are available, we need to select the best CGF. CGF is used for predicting the additional amount of
testing as well as evaluating the progress of testing. Predictive ability is considered a key aspect of
CGF. This paper defined SSPE as a measure for the predictive ability of CGF and applied to CGFs
that belong to the class of CGFs proposed by Park el al. (2007, 2008a). It is therefore required to
investigate whether the proposed SSPE criterion was applicable to other CGFs. In this paper CGFs
were first fitted by the method of maximum likelihood and then the predictive ability of the fitted CGFs
was evaluated and compared in terms of SSPE. The method of maximum likelihood is an estimation
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method optimal in the sense of goodness-of-fit. The primary concern was the predictive ability of
CGFs and it would be better to fit CGFs by a method other than maximum likelihood.

References

Crespo, A. N., Pasquini, A., Jino, M. and Maldonado, J. C. (2008). A binomial software reliability
model based on coverage of structural testing criteria, Empirical Software Engineering, 13, 185—
209.

Crespo, A. N., Pasquini, A., Jino, M. and Maldonado, J. C. (2009). Applying code coverage approach
to an infinite failure software reliability model, In Proceedings of 23rd Brazilian Symposium on
Software Reliability Engineering, 216-226.

Gokhale, S. S., Philip, T., Marinos, P. N. and Trivedi, K. S. (1996). Unification of finite failure
non-homogeneous Poisson process models through test coverage, In Proceedings of 7th IEEE
International Symposium on Software Reliability Engineering, 299-307.

Lyu, M. R. (1996). Handbook of Software Reliability Engineering, McGraw-Hill, New York.

Malaiya, Y. K., Li, M. N., Bieman, J. M. and Karcich, R. (2002). Software reliability growth and test
coverage, IEEE Transactions on Reliability, 51, 420—426.

Musa, J. D. (1999). Software Reliability Engineering: More Reliable Faster Development and Testing,
McGraw-Hill, New York.

Musa, J. D., Iannino, A. and Okumoto, K. (1987). Software Reliability: Measurement, Prediction,
Application, McGraw-Hill, New York.

Park, J. Y. and Fujiwara, T. (2006). Coverage growth functions for software reliability modeling,
Proceedings of 2nd Asian International Workshop on Advanced Reliability Modeling, 435-442.

Park, J. Y., Lee, G. and Park, J. H. (2007). A class of discrete time coverage growth functions for
software reliability engineering, Communications of the Korean Statistical Society, 14, 497-506.

Park, J. Y., Lee, G. and Park, J. H. (2008a). A class of coverage growth functions and its practical
application, Journal of the Korean Statistical Society, 37, 241-247.

Park, J. Y., Lee, G. and Park, J. H. (2008b). A general coverage-based NHPP SRGM framework,
Communications of the Korean Statistical Society, 15, 875-881.

Pham, H. and Zhang, X. (2003). NHPP software reliability and cost models with testing coverage,
European Journal of Operational Research, 145, 443-454.

Received July 2010; Accepted October 2010





