• Title/Summary/Keyword: growth and survival

Search Result 2,438, Processing Time 0.03 seconds

Superovulation-Oocyte and Uterine Function (과배란-난자 및 자궁기능)

  • 문영석
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.4
    • /
    • pp.379-384
    • /
    • 1997
  • Superovulation with exogenous gonadotropins creates a spectrum of pre or periovulatory hormonal changes with subsequent detrimental effects on oocyte quality, fertilization, embryo development, implantation and maintenance of pregnancy. Our recent study determined potential roles for insulin-like growth factor-1 (IGF-1) in uterine environment regulation and preimplant tation in the rat. The evidence indicates that IGF-l may play an important role in the main tenance of a receptive uterine environment for embryonic development and the regulation of decidualization. Embryonic loss and failure of implantations following superovulation may be partially attributed to disturbances in uterine IGF-l action as observed in this study. We investigated the effects of superovulatory doses of gonadotropins on frequency of chromosomal a abnormalities of mouse embryos. Chromosome a analysis of mouse zygotes and 8- to 16-cell stage embryos from spontaneously ovulated, 5, 10, and l 15 lU pregnant mare serum gonadotropin (PMSG) superovulated mice was carried out. Aneuploidy, polyploidy and structural chrom- osomal abnormalities were detected among the four groups. However, only polyploidy was correlated with superovulation. In 10 and 15 IV PMSG treated groups, the rate of polypoidy was 2.9% and 10.5%, respectively. Furthermore, there was a dose reponse relationship between the PMSG dose and the incidence of embryonic p polyploidy (P

  • PDF

Changes in plant hydraulic conductivity in response to water deficit

  • Kim, Yangmin X.;Sung, Jwakyung;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.35-35
    • /
    • 2017
  • How do plants take up water from soils especially when water is scarce in soils? Plants have a strategy to respond to water deficit to manage water necessary for their survival and growth. Plants regulate water transport inside them. Water flows inside the plant via (i) apoplastic pathway including xylem vessel and cell wall and (ii) cell-to-cell pathway including water channels sitting in cell membrane (aquaporins). Water transport across the root and leaf is explained by a composite transport model including those pathways. Modification of the components in those pathways to change their hydraulic conductivity can regulate water uptake and management. Apoplastic barrier is modified by producing Casparian band and suberin lamellae. These structures contain suberin known to be hydrophobic. Barley roots with more suberin content from the apoplast showed lower root hydraulic conductivity. Root hydraulic conductivity was measured by a root pressure probe. Plant root builds apoplastic barrier to prevent water loss into dry soil. Water transport in plant is also regulated in the cell-to-cell pathway via aquaporin, which has received a great attention after its discovery in early 1990s. Aquaporins in plants are known to open or close to regulate water transport in response to biotic and/or abiotic stresses including water deficit. Aquaporins in a corn leaf were opened by illumination in the beginning, however, closed in response to the following leaf water potential decrease. The evidence was provided by cell hydraulic conductivity measurement using a cell pressure probe. Changing the hydraulic conductivity of plant organ such as root and leaf has an impact not only on the speed of water transport across the plant but also on the water potential inside the plant, which means plant water uptake pattern from soil could be differentiated. This was demonstrated by a computer simulation with 3-D root structure having root hydraulic conductivity information and soil. The model study indicated that the root hydraulic conductivity plays an important role to determine the water uptake from soil with suboptimal water, although soil hydraulic conductivity also interplayed.

  • PDF

Freeze Drying of Fermented Milk Prepared from Milk and Fruit Juices (유유와 과즙으로 만든 발효유의 동결건조)

  • Ko, Young-Tae;Oh, Mi-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1448-1455
    • /
    • 1998
  • Fermented milk was prepared from milk or mixture of milk and apple juice/grape juice, and it was freeze dried. pH change and growth of Lactobacillus acidophilus (KCTC 2182) during freeze drying were studied. The effects of freeze drying on sensory evaluation and volatile aroma compounds in freeze dried sample or reconstituted sample were also studied. Freezing and freeze drying did not affect pH of fermented milk. Number of viable cells of L. acidophilus was markedly reduced during freezing or freeze drying. When number of viable cells in original fermented milk was considered as 100%, survival ratio of viable cells after freezing was $64.5{\sim}85.2%$ and that after freeze drying was $10.0{\sim}21.1%$. When sensory properties of original fermented milk prepared from juice-milk (ratio 15:35) were compared with those of freeze dried/reconstituted sample, sensory properties of original sample were better than those of freeze dried/reconstituted sample. Ethanol, diacetyl, butanol and acetoin were detected in all of original samples and freeze dried/reconstituted samples while acetone was detected in samples containing high amount of grape juice. Volatile aroma compounds in original fermented milk were reduced during freeze drying. L. acidophilus produced ethanol, diacetyl and acetoin during fermentation.

  • PDF

A Study on Ship Planning System for Container Terminal Using Multi-Distributed Method (다중분산기법을 이용한 컨테이너터미널 본선작업계획 수립에 관한 연구)

  • Choi, Hyung-Rim;Shin, Gae-Hyun;Kwon, Hae-Kyoung;Shon, Jung-Rock;Park, Sang-Hun;Joo, Yi-Don
    • Journal of Navigation and Port Research
    • /
    • v.33 no.10
    • /
    • pp.723-734
    • /
    • 2009
  • Container Vessel is becoming larger and faster thanks to the rapid growth of global trade and development of technology. Therefore, 15,000TEU vessel is expected to be ordered in near future. Every nations in north-east Asia are facing strong competition to be logistics hub to get the initiatives of logistics in response to the rapid change of logistics environment. According to the globalization of economy and major ports in this region also are trying to catch big shipping line for their survival. Considering above circumstances of the advent of ultra-large container vessel and spoke-and-hub strategy, it is inevitably necessary to make a fast and accurate vessel job in the terminal in order to be a leading port To meet this objective, current vessel planning system has to be improved innovatively. Therefore, this thesis propose multi distributed vessel planning system which enables multi loading/discharging planning with several planner simultaneously for faster and more accurate than existing planning and enhances quality of planning through information sharing among planners. Also this thesis uses simulation through Arena to verify the efficiency of this multi-distributed vessel planning system.

Commercial Scale Evaluation of Practical Extruded Pellet Feed for the Olive Flounder (Paralichthys olivaceus) (넙치 실용배합사료개발을 위한 현장적용시험)

  • Kim Kang-Woong;Kang Yong-Jin;Lee Hae-Young;Kim Kyoung-Duck;Choi Se-Min;C. Bai Sung-Chul;Park Hung-Sik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.2
    • /
    • pp.100-105
    • /
    • 2006
  • This study was conducted to evaluate the effects of extruded pellet (EP) diets, as compared to a raw fish moist pellet (MP) diet for olive flounder, Paralichthys olivaceus, grown in commercial-scale aquaculture for 1 year. Four diets with duplication per diet were formulated for this experiment: two experimental EP diets (EP1 and EP2), one commercial EP diet (CEP), and a raw fish MP diet (MP). The MP diet consisted of 80% frozen horse mackerel and 20% commercial binder meal. Fish weighing $30.1{\pm}0.1 g$ ($mean{\pm}SD$) were distributed randomly to each aquarium as a group of 2,600 fish. Weight gain (WG) and feed efficiency ratio (FER) of fish fed EP2 and MP were higher (P<0.05) than those of fish fed CEP, while those of fish fed EP1 did not differ (P>0.05) from those fed EP2 and MP. However, fish fed the MP diet had a higher survival rate than fish fed the other diets. Fish fed EP2 had higher serum, phospholipids and total protein levels, and lower levels of serum glutamic-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT), and total cholesterol than fish fed MP (P<0.05). Dorsal muscle and liver proteins and lipid of fish fed EP1 were higher (P<0.05) than those of fish fed CEP, while those of fish fed EP1 and MP did not differ from those of fish fed EP2 (P>0.05). These results strongly suggest that EP1 could be developed to replace MP for grow-out stage production of olive flounder without adverse effects on growth performance.

Effects of Chrysanthemum indicum L. Extract on the Function of Osteoblastic MC3T3-E1 Cells under Oxidative Stress Induced by Hydrogen PeroxideJee (감국(Chrysanthemum indicum L.) 추출물이 H2O2로 유도한 산화적 스트레스에서 MC3T3-E1 조골세포 기능에 미치는 영향)

  • Yun, Jee-Hye;Hwang, Eun-Sun;Kim, Gun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.82-88
    • /
    • 2012
  • Chrysanthemum indicum L. (Asteraceae) is a traditional herbal medicine that has been used for the treatment of inflammation, hypertension, and respiratory diseases due to its strong antagonistic activity against inflammatory cytokines. The effects of Chrysanthemum indicum L. Extract (CIE) for increasing cell growth, alkaline phosphatase (ALP) activity, and collagen content were totally inhibited, suggesting that the effect of CIE might be partly involved with estrogen activity. Furthermore, the protective effects of CIE on the response of osteoblasts to oxidative stress were evaluated. Osteoblastic MC3T3-E1 cells were incubated with hydrogen peroxide and/or CIE, and markers of osteoblast function and oxidative damage were examined. CIE significantly increased cell survival, ALP activity, and calcium deposition, and decreased the production of Reactive Oxygen Species (ROS) and Tumor Necrosis Factor-${\alpha}$ (TNF-${\alpha}$) in osteoblasts. Taken together, these results indicate that the enhancement of osteoblast function by CIE may prevent osteoporosis and inflammatory bone diseases.

Photosynthetic and respiratory responses of the surfgrass, Phyllospadix japonicus, to the rising water temperature (수온 상승에 따른 게바다말의 광합성 및 호흡률 변화)

  • Hyegwang Kim;Jong-Hyeob Kim;Seung Hyeon Kim;Zhaxi Suonan;Kun-Seop Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.352-362
    • /
    • 2022
  • Photosynthesis and respiration of seagrasses are mainly controlled by water temperature. In this study, the photosynthetic physiology and respiratory changes of the Asian surfgrass Phyllospadix japonicus, which is mainly distributed on the eastern and southern coasts of Korea, were investigated in response to changing water temperature (5, 10, 15, 20, 25, and 30℃) by conducting mesocosm experiments. Photosynthetic parameters (maximum photosynthetic rate, Pmax; compensation irradiance, Ic; and saturation irradiance, Ik) and respiration rate of surfgrass increased with rising water temperature, whereas photosynthetic efficiency (α) was fairly constant among the water temperature conditions. The Pmax and Ik dramatically decreased under the highest water temperature condition (30℃), whereas the Ic and respiration rate increased continuously with the increasing water temperature. Ratios of maximum photosynthetic rates to respiration rates (Pmax : R) were highest at 5℃ and declined markedly at higher temperatures with the lowest ratio at 30℃. The minimum requirement of Hsat (the daily period of irradiance-saturated photosynthesis) of P. japonicus was 2.5 hours at 5℃ and 10.6 hours at 30℃ for the positive carbon balance. Because longer Hsat was required for the positive carbon balance of P. japonicus under the increased water temperature, the rising water temperature should have negatively affected the growth, distribution, and survival of P. japonicus on the coast of Korea. Since the temperature in the temperate coastal waters is rising gradually due to global warming, the results of this study could provide insights into surfgrass responses to future severe sea warming and light attenuation.

Effect of Shading and Nitrogen Level on the Accumulation of $NO_3\;^-$ in Leaf of Lettuce(Lactuca Sativa. L.) (차광 및 질소시비량이 상추내 질산염 함량에 미치는 영향)

  • Lee, Gyeong-Ja;Kang, Bo-Goo;Kim, Hyun-Ju;Min, Kyeong-Beom
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.294-299
    • /
    • 2000
  • In order to find out the effects of shading and nitrogen fertilization on the accumulation of $NO_3\;^-$ in leaves of lettuce, lettuce plants were cultivated in the pots under glasshouse condition with different rates of shading(0, 50%) and nitrogen fertilization(100, 180, 200, 300, $400\;kg{\cdot}ha^{-1}$). The pH value was lower in soil after experiment than before experiment, whereas, contents of EC and $NO_3-N$ were higher. As the amounts of nitrogen fertilization were increased, pHs were decreased, but EC and the contents of $NO_3-N$ were increased. At the nitrogen fertilizations of 100, 180, 200, 300 and $400\;kg{\cdot}ha^{-1}$, the germination rates of lettuce were decreased to 84, 78, 76, 72 and 74%, and survival rates were also decreased to 94, 94, 90, 60 and 46%, respectively. However, the fresh weight of lettuce was highest at $45\;g{\cdot}plant^{-1}$ in the recommended fertilizer $plot(180\;kg{\cdot}ha^{-1})$ with non-shading condition. The contents of $NO_3\;^-$ in the leaves of lettuce were increased 2.8-4.1 times under 50% shading conditions than that under non-shading condition. It kept increasing up to seven order of growth phase; however, it started to decrease after eight order phase. Nitrate reductase activity of lettuce in non-shading condition was higher than that in 50% shading condition.

  • PDF

Novel Algicidal Substance (Naphthoquinone Group) from Bio-derived Synthetic Materials against Harmful Cyanobacteria, Microcystis and Dolichospermum (유해 남조류 Microcystis와 Dolichospermum에 대하여 선택적 제어가 가능한 생물유래 살조물질 (Naphthoquinone 계열))

  • Joo, Jae-Hyoung;Cho, Hoon;Han, Myung-Soo
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.1
    • /
    • pp.22-34
    • /
    • 2016
  • We developed a biologically-derived substance naphthoquinone (NQ) derivate for the eco-safe mitigation of harmful cyanobacteria blooms such as Microcystis and Dolichospermum. NQ was reacted with various substituents ($R_n$) to produce different NQ derivatives. We tested a total of 92 algicidal compounds based on the algicidal activity of Microcystis and Dolichospermum. 22 compounds of NQ were selected as candidates (algicidal activity >80% at $1{\mu}M$). Among them, NQ 40 compound showed the highest algicidal activity of 99.6% and 100% at the optimal concentration of $1{\mu}M$ on Microcystis and Dolichospermum, respectively. No algicidal effects of NQ 40 ($1{\mu}M$) were observed against non-target algae such as Stephanodiscus, Cyclotella and Peridinium. According to the results of acute eco-toxicity assessment, the $EC_{50}$ values of NQ 40 compound for Selenastrum capricornutum and Daphnia magna were 3.2 and $14.5{\mu}M$, respectively, and the $LC_{50}$ for Danio rerio was $15.7{\mu}M$. In addition, for D. magna chronic eco-toxicity assessment, no toxicity toward survival, growth and reproduction was observed. Therefore, we suggested the NQ 40 ($1{\mu}M$) compound as an alternative eco-safe algicidal substance to effectively mitigate harmful cyanobacteria blooms.

MicroRNA-126 Regulates the Expression of Stem Cell Transcription Factors (Sox2 and Lin28) in Various Ovarian Tumors (MicroRNA-126은 난소 종양세포의 줄기세포 전사인자 (Sox2와 Lin28) 발현을 조절한다)

  • Park, Ho;Jekal, Seung Joo
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.298-305
    • /
    • 2015
  • Stem cell-like tumor cells are reported to be the main reason for tumor recurrence and metastasis. As one of the new approaches to overcome cancer, studies are emerging to inhibit the expressions of stem cell transcriptional factors (Oct4, Sox2, Klf-4, and Lin28) in cancer cells. MicroRNAs are master genetic regulators that can control development and differentiation of stem cells. In this study using various ovarian tumors (Skov3, Ovcar3, Tov112D, Tov21G, PA-1 and Hsc832(c)T), we examined the expressions of stem cell-related transcription factors, and the biological changes in cell survival and growth by miR-126 that targets stem cell transcriptional factors. We observed that treatment of miR-126 induced the morphological changes and cell suspension in most cells. In addition, miR-126 induced gradual regression of cell division except Skov3 cells, especially significant time-dependent reduction in Tov112D, Tov21G and PA-1. When we examined the expression of stem cell transcriptional factors, Sox2 was shown to be down-regulated after miR-126. Our results demonstrate that miR-126 treatment can provide the reversible environment to regulate cell division and to induce cell death of ovarian tumors, suggesting the molecular biological clues for clinical usage.