Browse > Article
http://dx.doi.org/10.17820/eri.2016.3.1.022

Novel Algicidal Substance (Naphthoquinone Group) from Bio-derived Synthetic Materials against Harmful Cyanobacteria, Microcystis and Dolichospermum  

Joo, Jae-Hyoung (Department of Life Science, Hanyang University)
Cho, Hoon (Department of Polymer Science and Engineering, Chosun University)
Han, Myung-Soo (Department of Life Science, Hanyang University)
Publication Information
Ecology and Resilient Infrastructure / v.3, no.1, 2016 , pp. 22-34 More about this Journal
Abstract
We developed a biologically-derived substance naphthoquinone (NQ) derivate for the eco-safe mitigation of harmful cyanobacteria blooms such as Microcystis and Dolichospermum. NQ was reacted with various substituents ($R_n$) to produce different NQ derivatives. We tested a total of 92 algicidal compounds based on the algicidal activity of Microcystis and Dolichospermum. 22 compounds of NQ were selected as candidates (algicidal activity >80% at $1{\mu}M$). Among them, NQ 40 compound showed the highest algicidal activity of 99.6% and 100% at the optimal concentration of $1{\mu}M$ on Microcystis and Dolichospermum, respectively. No algicidal effects of NQ 40 ($1{\mu}M$) were observed against non-target algae such as Stephanodiscus, Cyclotella and Peridinium. According to the results of acute eco-toxicity assessment, the $EC_{50}$ values of NQ 40 compound for Selenastrum capricornutum and Daphnia magna were 3.2 and $14.5{\mu}M$, respectively, and the $LC_{50}$ for Danio rerio was $15.7{\mu}M$. In addition, for D. magna chronic eco-toxicity assessment, no toxicity toward survival, growth and reproduction was observed. Therefore, we suggested the NQ 40 ($1{\mu}M$) compound as an alternative eco-safe algicidal substance to effectively mitigate harmful cyanobacteria blooms.
Keywords
Algicide; Eco-friendly mitigate; Harmful cyanobacteria blooms; Naphthoquinone derivative;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Gumbo, R.J., Ross, G. and Cloete, T. 2010. The isolation and identification of predatory bacteria from a Microcystis algal bloom. African Journal of Biotechnology 9: 663-671.   DOI
2 Harn, Y., Choi, C.K., Shin, H.S. 2010. A study on the oxidative transformation of quinone compound using nanostructured black-birnessite. Environmental Engineering Research 32: 547-554. (in Korean)
3 Hobson, P., Fazekas, C., House, J., Daly, R. I., Kildea, T., Giglio, S. and Chen, Y.M. 2010. Tastes and Odours in Reservoirs-Research Report 73. Water Quality Research Australia, Adelaide, Australia.
4 Jancula, D., Drabkova, M., cerny, J., Karaskova, M., Korinkova, R., Rakusan, J. and Marsalek, B. 2008. Algicidal activity of phthalocyanines-screening of 31 compounds. Environmental Toxicology 23(2): 218-23.   DOI
5 Jewess, P.J., Higgins, J., Berry, K.J., Moss, S.R., Boogaard, A.B. and Khambay, B.P.S. 2002 Herbicidal action of 2-hydroxy-3-alkyl-1,4-naphthoquinones. Pest Management Science 58(3): 234-242.   DOI
6 Jori, G. and Brown, S.B. 2004. Photosensitized inactivation of microorganisms. Photochemical & Photobiological Sciences 3: 403-405.   DOI
7 Joo, J.H., Kang, Y.H., Park, B.S., Park, C.S., Cho, H. and Han, M.S. 2015. A field application feasibility assessment of naphthoquinone derivatives for the mitigation of freshwater diatom Stephanodiscus blooms. Journal of Applied Phycology 1: 1-12.
8 Koss, A.M. and Snyder, W.E. 2005. Alternative prey disrupt biocontrol by a guild of generalist predators. Biological Control 32: 243-251.   DOI
9 Lim, B.J., Kim, S.H. and Jun, S.O. 2002. Application of various plants as an inhibitor of algal growth: studies in barge enclosure and artificially eutrophicated pond. Korean Journal of Limnology 35: 123-132. (in Korean)
10 Lurling, M. and Oosterhout, F.V. 2013. Case study on the efficacy of a lanthanum-enriched clay (Phoslock$^{(R)}$) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands). Hydrobiologia 710: 253-263.   DOI
11 Monks, T.J., Hanzlik, R.P., Cohen, G.M., Ross, D. and Graham, D.G. 1992. Quinone chemistry and toxicity. Toxicology and Applied Pharmacology 112: 2-16.   DOI
12 Menna-Barreto, R.F., Correa, J.R., Cascabulho, C.M., Fernandes, M.C., Pinto, A.V., Soares, M.J. and De Castro, S.L. 2009. Naphthoimidazoles promote different death phenotypes in Trypanosoma cruzi. Parasitology 136: 499-510.   DOI
13 Nakai, S., Inoue, Y., Hosomi, M. and Murakami, A. 2000. Myriophyllum spicatum released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Research 34: 3026-3032.   DOI
14 Nakai, S., Yamada, S. and Hosomi, M. 2005. Anticyanobacterial fatty acids released from Myriophyllum spicatum. Hydrobiologia 543: 71-78.   DOI
15 NIES. 2004. Microalgae and protozoa. In, Watanabe, M.M., Hiroki, M., Kasai, F., Kawachi, M., Shimizu, A., Erata, M., Mori, F. and Yumoto, K. (eds), NIES-Collection: List of Strains, National Institute for Environmental Studies, Tsukuba, Japan, pp. 50-51.
16 O'Brien, P.J. 1991. Molecular mechanisms of quinone cytotoxicity. Chemico-Biological Interactions 80: 1-41.   DOI
17 OECD. 1992. Test No. 203: Fish, Acute Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2, Organization for Economic Cooperation and Development Publishing, Paris, France.
18 OECD. 1996. Guidelines for Testing of Chemicals. Proposal for Updated Guideline 211, Daphnia magna Reproduction Test. Organization for Economic Cooperation and Development, Paris, France.
19 Bertoloni, G., Rossi, F., Valduga, G., Jori, G., Ali, H. and Van Lier, J. 1992. Photosensitizing activity of water-soluble and lipid-soluble phthalocyanines on prokaryotic and eukaryotic microbial-cells. Microbios 71: 33-46.
20 Beakes, G., Canter, H.M. and Jaworski, G.H.M. 1988. Zoospores ultrastructure of Zygorhizidium affluens Canter and Z. planktonicum Canter, two chytrids parasitizing the diatom Asterionella formosa Hassall. Canadian Journal of Botany 66: 1054-1067.   DOI
21 Oliveira, R., Domingues, I., Grisolia, C.K. and Soares, A. 2009. Effects of triclosan on zebrafish earlylife stages and adults. Environmental Science and Pollution Research 16(6): 679-688.   DOI
22 OECD. 2004. Test No. 202: Daphnia sp., Acute Immobilisation Test, OECD Guidelines for the Testing of Chemicals, Section 2, Organization for Economic Cooperation and Development Publishing, Paris, France.
23 OECD. 2011. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2, Organization for Economic Cooperation and Development Publishing, Paris, France.
24 Orvos, D.R., Versteeg, D.J., Inauen, J., Capdevielle, M., Rothenstein, A. and Cunningham, V. 2002. Aquatic toxicity of triclosan. Environmental Toxicology and Chemistry 21: 1338-1349.   DOI
25 Park, M.H., Lee, S.J., Yoon, B.D. and Oh, H.M. 2001. Effects of cell CaSi and bioflocculant on the control of algal bloom. Korean Journal of Environmental Biology 19: 129-135. (in Korean)
26 Schrader, K.K., Nanayakkara, N.D., Tucker, C.S., Rimando, A.M., Ganzera, M. and Schaneberg, B.T. 2003. Novel derivatives of 9, 10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata. Applied and Environmental Microbiology 69: 5319-5327.   DOI
27 Segalla, A., Borsarelli, C.D., Braslavsky, S.E., Spikes, J.D., Roncucci, G., Dei, D., Chiti, G., Jori, G. and Reddi, E. 2002. Photophysical, photochemical and antibacterial photosensitizing properties of a novel octacationic Zn (II)-phthalocyanine. Photochemical & Photobiological Sciences 1: 641-648.   DOI
28 Shao, J., Xu, Y., Wang, Z., Jiang, Y., Yu, G., Peng, X. and Li, R. 2011. Elucidating the toxicity targets of ${\beta}$-ionone on photosynthetic system of Microcystis aeruginosa NIES-843 (Cyanobacteria). Aquatic Toxicology 104: 48-55.   DOI
29 Byun, J.H., Joo, J.H., Kim, B.H. and Han, M.S. 2015. Application possibility of naphthoquinone derivative NQ 4-6 for mitigation of winter diatom bloom. Ecology and Resilient infrastructure 2: 224-236. (in Korean)   DOI
30 Biggins, J. 1990. Evaluation of selected benzoquinones, naphthoquinones, and anthraquinones as replacements for phylloquinone in the AI acceptor site of the photosystem I reaction center. Biochemistry 29: 7259-7264.   DOI
31 Codd, G.A., Morrison, L.F. and Metcalf, J.S. 2005. Cyanobacterial toxins: risk management for health protection. Toxicology and Applied Pharmacology 203(3): 264-272.   DOI
32 Combs, A.B., Porter, T.H. and Folkers, K. 1976. Anticoagulant activity of a naphthoquinone analog of vitamin K and an inhibitor of coenzyme Q10-enzyme systems. Research Communications in Chemical Pathology and Pharmacology 13: 109-114.
33 De Oliveira-Filho, E.C., Lopes, R.M. and Paumgartten, F.J.R. 2004. Comparative study on the susceptibility of freshwater species to copper-based pesticides. Chemosphere 56(4): 369-374.   DOI
34 Dong, Y., Chin, S.F., Blanco, E., Bey, E.A., Kabbani, W., Xie, X.J., Bornmann, W.G., Boothman, D.A. and Gao, J. 2009. Intratumoral delivery of betalapachone via polymer implants for prostate cancer therapy. Clinical Cancer Research 15: 131-139.   DOI
35 Duke, S.O., Dayan, F.E., Rimando, A.M., Schrader, K.K., Aliotta, G., Oliva, A. and Romagni, J.G. 2002. Chemicals from nature for weed management. Weed Science 50(2): 138-151.   DOI
36 Findlay, J.W. and Dillard, R.F. 2007. Appropriate calibration curve fitting in ligand binding assays. The American Association of Pharmaceutical Scientists Journal 9(2): E260-E267.
37 Yamamoto, M., Murai, H. Takeda, A., Okunishi, S. and Morisaki, S. 2005. Bacterial flora of the biofilm Formed on the submerged surface of the reed Phragmites australis. Microbes and Environments 20: 14-24.   DOI
38 Tatarazako, N., Ishibashi, H., Teshima, K., Kishi, K. and Arizono, K. 2003. Effects of triclosan on various aquatic organisms. Environmental Sciences 11: 133-140.
39 Wu, Y., Liu, J., Yang, L., Chen, H., Zhang, S., Zhao, H. and Zhang, N. 2011. Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environmental Microbiology 13: 604-615.   DOI
40 Yamamoto, Y., Kouchiwa, T., Hodoki, Y., Hotta, K., Uchida, H. and Harada, K.I. 1998. Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake. Journal of Applied Phycology 10: 391-397.   DOI
41 Zamyadi, A., Sawade, E., Ho, L., Newcombe, G. and Hofmann, R. 2015. Impact of UV-$H_2O_2$ advanced oxidation and aging processes on GAC capacity for the removal of cyanobacterial taste and odor compounds. Environmental Health Insights 9 (Suppl 3): 1.0