Browse > Article
http://dx.doi.org/10.11626/KJEB.2022.40.3.352

Photosynthetic and respiratory responses of the surfgrass, Phyllospadix japonicus, to the rising water temperature  

Hyegwang Kim (Department of Biological Sciences, Pusan National University)
Jong-Hyeob Kim (Institute of Biodiversity-assessment Technology and Restoration Systems)
Seung Hyeon Kim (Department of Biological Sciences, Pusan National University)
Zhaxi Suonan (Department of Biological Sciences, Pusan National University)
Kun-Seop Lee (Department of Biological Sciences, Pusan National University)
Publication Information
Korean Journal of Environmental Biology / v.40, no.3, 2022 , pp. 352-362 More about this Journal
Abstract
Photosynthesis and respiration of seagrasses are mainly controlled by water temperature. In this study, the photosynthetic physiology and respiratory changes of the Asian surfgrass Phyllospadix japonicus, which is mainly distributed on the eastern and southern coasts of Korea, were investigated in response to changing water temperature (5, 10, 15, 20, 25, and 30℃) by conducting mesocosm experiments. Photosynthetic parameters (maximum photosynthetic rate, Pmax; compensation irradiance, Ic; and saturation irradiance, Ik) and respiration rate of surfgrass increased with rising water temperature, whereas photosynthetic efficiency (α) was fairly constant among the water temperature conditions. The Pmax and Ik dramatically decreased under the highest water temperature condition (30℃), whereas the Ic and respiration rate increased continuously with the increasing water temperature. Ratios of maximum photosynthetic rates to respiration rates (Pmax : R) were highest at 5℃ and declined markedly at higher temperatures with the lowest ratio at 30℃. The minimum requirement of Hsat (the daily period of irradiance-saturated photosynthesis) of P. japonicus was 2.5 hours at 5℃ and 10.6 hours at 30℃ for the positive carbon balance. Because longer Hsat was required for the positive carbon balance of P. japonicus under the increased water temperature, the rising water temperature should have negatively affected the growth, distribution, and survival of P. japonicus on the coast of Korea. Since the temperature in the temperate coastal waters is rising gradually due to global warming, the results of this study could provide insights into surfgrass responses to future severe sea warming and light attenuation.
Keywords
carbon balance; light requirement; photosynthesis; Phyllospadix japonicus; rising water temperature;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Abe M, A Kurashima and M Maegawa. 2008. High water-temperature tolerance in photosynthetic activity of Zostera marina seedlings from Ise Bay, Mie Prefecture, central Japan. Fish. Sci. 74:1017-1023. https://doi.org/10.1111/j.1444-2906.2008.01619.x    DOI
2 Beca-Carretero P, T Azcarate-Garcia, M Julia-Miralles, CS Stanschewski, F Guiheneuf and DB Stengel. 2021. Seasonal acclimation modulates the impacts of simulated warming and light reduction on temperate seagrass productivity and biochemical composition. Front. Mar. Sci. 8:731152. https://doi.org/10.3389/fmars.2021.731152    DOI
3 Bertelli CM and RKF Unsworth. 2014. Protecting the hand that feeds us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat. Mar. Pollut. Bull. 83:425-429. https://doi.org/10.1016/j.marpolbul.2013.08.011    DOI
4 Bulthuis DA. 1987. Effects of temperature on photosynthesis and growth of seagrasses. Aquat. Bot. 27:27-40. https://doi.org/10.1016/0304-3770(87)90084-2    DOI
5 Cha EJ, M Kimoto, EJ Lee and JG Jhun. 2007. The recent increase in the heavy rainfall events in August over the Korean Peninsula. J. Korean. Earth Sci. Soc. 28:585-597. https://doi.org/10.5467/JKESS.2007.28.5.585    DOI
6 Choi SK, YH Kang and SR Park. 2020. Growth responses of kelp species Ecklonia cava to different temperatures and nitrogen sources. Korean J. Environ. Biol. 38:404-415. https://doi.org/10.11626/KJEB.2020.38.3.404    DOI
7 Christianen MJA, J van Belzen, PMJ Herman, MM van Katwijk, LPM Lamers, PJM van Leent and TJ Bouma. 2013. Low-canopy seagrass beds still provide important coastal protection services. PLoS One 8:e62413. https://doi.org/10.1371/journal.pone.0062413    DOI
8 Collier CJ and M Waycott. 2014. Temperature extremes reduce seagrass growth and induce mortality. Mar. Pollut. Bull. 83:483-490. https://doi.org/10.1016/j.marpolbul.2014.03.050    DOI
9 Collier CJ, YX Ow, L Langlois, S Uthicke, CL Johansson, KR O'Brien, V Hrebien and MP Adams. 2017. Optimum temperatures for net primary productivity of three tropical seagrass species. Front. Plant Sci. 8:1446. https://doi.org/10.3389/fpls.2017.01446    DOI
10 De los Santos CB, I Olive, M Moreira, A Silva, C Freitas, R Araujo Luna, H Quental-Ferreira, M Martins, MM Costa, J Silva, ME Cunha, F Soares, P Pousap-Ferreira and R Santos. 2020. Seagrass meadows improve inflowing water quality in aquaculture ponds. Aquaculture 528:735502. https://doi.org/10.1016/j.aquaculture.2020.735502    DOI
11 Dennison WC, RJ Orth, KA Moore, JC Stevenson, V Carter, S Kollar, PW Bergstrom and RA Batiuk. 1993. Assessing water quality with submersed aquatic vegetation. Bioscience 43:86-94. https://doi.org/10.2307/1311969    DOI
12 Erftemeijer PLA and RRR Lewis. 2006. Environmental impacts of dredging on seagrasses: A review. Mar. Pollut. Bull. 52:1553-1572. https://doi.org/10.1016/j.marpolbul.2006.09.006    DOI
13 Fourqurean JW and JC Zieman. 1991. Photosynthesis, respiration and whole plant carbon budget of the seagrass Thalassia testudinum. Mar. Ecol. Prog. Ser. 69:161-170.    DOI
14 Green EP and FT Short. 2003. World Atlas of Seagrasses. University of California Press. Berkeley, CA.
15 Grice AM, NR Loneragan and WC Dennison. 1996. Light intensity and the interactions between physiology, morphology and stable isotope ratios in five species of seagrass. J. Exp. Mar. Biol. Ecol. 195:91-110. https://doi.org/10.1016/0022-0981(95)00096-8    DOI
16 Hammer KJ, J Borum, H Hasler-Sheetal, EC Shields, K Sand-Jensen and KA Moore. 2018. High temperatures cause reduced growth, plant death and metabolic changes in eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 604:121-132. https://doi.org/10.3354/meps12740    DOI
17 Hemminga MA and CM Duarte. 2000. Seagrass Ecology. Cambridge University Press. Cambridge, UK. 
18 IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Masson-Delmotte V et al., eds.). Cambridge University Press. Cambridge and New York. 
19 Hosack GR, BR Dumbauld, JL Ruesink and DA Armstrong. 2006. Habitat associations of estuarine species: Comparisons of intertidal mudflat, seagrass (Zostera marina), and oyster (Crassostrea gigas) habitats. Estuaries Coasts 29:1150-1160. https://doi.org/10.1007/BF02781816    DOI
20 Hyun JH, KS Choi, KS Lee, SH Lee, YK Kim and CK Kang. 2020. Climate change and anthropogenic impact around the Korean coastal ecosystems: Korean Long-term Marine Ecological Research (K-LTMER). Estuaries Coasts 43:441-448. https://doi.org/10.1007/s12237-020-00711-6    DOI
21 Jassby AD and T Platt. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21:540-547. https://doi.org/10.4319/lo.1976.21.4.0540    DOI
22 Kendrick GA, RJ Nowicki, YS Olsen, S Strydom, MW Fraser, EA Sinclair, J Statton, RK Hovey, JA Thomson, DA Burkholder, KM McMahon, K Kilminster, Y Hetzel, JW Fourqurean, MR Heithaus and RJ Orth. 2019. A systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Front. Mar. Sci. 6:455. https://doi.org/10.3389/fmars.2019.00455    DOI
23 Kim JH, JH Kim, GY Kim and JI Park. 2018. Growth dynamics of the surfgrass, Phyllospadix iwatensis on the eastern coast of Korea. The Sea 23:192-203. https://doi.org/10.7850/jkso.2018.23.4.192    DOI
24 Kim SH, JH Kim, SR Park and KS Lee. 2014. Annual and perennial life history strategies of Zostera marina populations under different light regimes. Mar. Ecol. Prog. Ser. 509:1-13. https://doi.org/10.3354/meps10899    DOI
25 Lee KS, SR Park and YK Kim. 2007b. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. J. Exp. Mar. Biol. Ecol. 350:144-175. https://doi.org/10.1016/j.jembe.2007.06.016    DOI
26 Lee KS and KH Dunton. 1999. Inorganic nitrogen acquisition in the seagrass Thalassia testudinum: Development of a whole-plant nitrogen budget. Limnol. Oceanogr. 44:1204-1215. https://doi.org/10.4319/lo.1999.44.5.1204    DOI
27 Lee KS, JI Park, YK Kim, SR Park and JH Kim. 2007a. Recolonization of Zostera marina following destruction caused by a red tide algal bloom: The role of new shoot recruitment from seed banks. Mar. Ecol. Prog. Ser. 342:105-115. https://doi.org/10.3354/meps342105    DOI
28 Lee KS, SR Park and JB Kim. 2005. Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Mar. Biol. 147:1091-1108. https://doi.org/10.1007/s00227-005-0011-8    DOI
29 Marsh JA, WC Dennison and RS Alberte. 1986. Effects of temperature on photosynthesis and respiration in eelgrass (Zostera marina L.). J. Exp. Mar. Biol. Ecol. 101:257-267. https://doi.org/10.1016/0022-0981(86)90267-4    DOI
30 Mcleod E, GL Chmura, S Bouillon, R Salm, M Bjork, CM Duarte, CE Lovelock, WH Schlesinger and BR Silliman. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9:552-560. https://doi.org/10.1890/110004    DOI
31 Nordlund LM, EW Koch, EB Barbier and JC Creed. 2017. Correction: Seagrass ecosystem services and their variability across genera and geographical regions. PLoS One 12:e0169942. https://doi.org/10.1371/journal.pone.0169942    DOI
32 Qin LZ, SH Kim, HJ Song, HG Kim, Z Suonan, O Kwon, YK Kim, SR Park, JI Park and KS Lee. 2020a. Long-term variability in the flowering phenology and intensity of the temperate seagrass Zostera marina in response to regional sea warming. Ecol. Indic. 119:106821. https://doi.org/10.1016/j.ecolind.2020.106821    DOI
33 Park JI and KS Lee. 2009. Peculiar growth dynamics of the surf-grass Phyllospadix japonicus on the southeastern coast of Korea. Mar. Biol. 156:2221-2233. https://doi.org/10.1007/s00227-009-1250-x    DOI
34 Park JI, JH Kim, JH Kim and MS Kim. 2019. Growth dynamics of the surfgrass, Phyllospadix Japonicus on the southeastern coast of Korea. The Sea 24:548-561. https://doi.org/10.7850/jkso.2019.24.4.548    DOI
35 Park JI, KS Lee and MH Son. 2012. Germination rate of Zostera marina and Phyllospadix japonicus related to environmental factors. Korean J. Environ. Biol. 30:280-285. 
36 Qin LZ, SH Kim, HJ Song, Z Suonan, H Kim, O Kwon and KS Lee. 2020b. Influence of regional water temperature variability on the flowering phenology and sexual reproduction of the seagrass Zostera marina in Korean coastal waters. Estuaries Coasts 43:449-462. https://doi.org/10.1007/s12237-019-00569-3    DOI
37 Ralph PJ, MJ Durako, S Enriquez, CJ Collier and MA Doblin. 2007. Impact of light limitation on seagrasses. J. Exp. Mar. Biol. Ecol. 350:176-193. https://doi.org/10.1016/j.jembe.2007.06.017    DOI
38 Rasmusson LM, P Buapet, R George, M Gullstrom, PCB Gunnarsson and M Bjork. 2020. Effects of temperature and hypoxia on respiration, photorespiration, and photosynthesis of seagrass leaves from contrasting temperature regimes. ICES J. Mar. Sci. 77:2056-2065. https://doi.org/10.1093/icesjms/fsaa093    DOI
39 Smale DA, T Wernberg, ECJ Oliver, M Thomsen, BP Harvey, SC Straub, MT Burrows, LV Alexander, JA Benthuysen, MG Donat, M Feng, AJ Hobday, NJ Holbrook, SE Perkins-Kirkpatrick, HA Scannell, AS Gupta, BL Payne and PJ Moore. 2019. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9:306-312. https://doi.org/10.1038/s41558-019-0412-1    DOI
40 Short F, T Carruthers, W Dennison and M Waycott. 2007. Global seagrass distribution and diversity: A bioregional model. J. Exp. Mar. Biol. Ecol. 350:3-20. https://doi.org/10.1016/j.jembe.2007.06.012    DOI
41 Smith KE, MT Burrows, AJ Hobday, A Sen Gupta, PJ Moore, M Thomsen, T Wernberg and DA Smale. 2021. Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science 374:eabj3593. https://doi.org/10.1126/science.abj3593    DOI
42 Strydom S, K Murray, S Wilson, B Huntley, M Rule, M Heithaus, C Bessey, GA Kendrick, D Burkholder, MW Fraser and K Zdunic. 2020. Too hot to handle: Unprecedented seagrass death driven by marine heatwave in a World Heritage Area. Glob. Change Biol. 26:3525-3538. https://doi.org/10.1111/gcb.15065    DOI
43 Valentine JF and KL Heck. 2021. Herbivory in seagrass meadows: an evolving paradigm. Estuaries Coasts 44:491-505. https://doi.org/10.1007/s12237-020-00849-3    DOI
44 Van Keulen M and MA Borowitzka. 2003. Seasonal variability in sediment distribution along an exposure gradient in a seagrass meadow in Shoalwater Bay, Western Australia. Estuar. Coast. Shelf Sci. 57:587-592. https://doi.org/10.1016/S0272-7714(02)00394-3    DOI
45 Walter RK, JK O'Leary, S Vitousek, M Taherkhani, C Geraghty and A Kitajima. 2020. Large-scale erosion driven by intertidal eelgrass loss in an estuarine environment. Estuar. Coast. Shelf Sci. 243:106910. https://doi.org/10.1016/j.ecss.2020.106910    DOI
46 Zimmerman RC, A Cabello-Pasini and RS Alberte. 1994. Modeling daily production of aquatic macrophytes from irradiance measurements: A comparative analysis. Mar. Ecol. Prog. Ser. 114:185-196.    DOI
47 Whitfield AK. 2017. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Rev. Fish Biol. Fish. 27:75-110. https://doi.org/10.1007/s11160-016-9454-x    DOI