• Title/Summary/Keyword: groups of automorphisms

Search Result 27, Processing Time 0.022 seconds

Cryptographic Protocols using Semidirect Products of Finite Groups

  • Lanel, G.H.J.;Jinasena, T.M.K.K.;Welihinda, B.A.K.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.17-27
    • /
    • 2021
  • Non-abelian group based cryptosystems are a latest research inspiration, since they offer better security due to their non-abelian properties. In this paper, we propose a novel approach to non-abelian group based public-key cryptographic protocols using semidirect products of finite groups. An intractable problem of determining automorphisms and generating elements of a group is introduced as the underlying mathematical problem for the suggested protocols. Then, we show that the difficult problem of determining paths and cycles of Cayley graphs including Hamiltonian paths and cycles could be reduced to this intractable problem. The applicability of Hamiltonian paths, and in fact any random path in Cayley graphs in the above cryptographic schemes and an application of the same concept to two previous cryptographic protocols based on a Generalized Discrete Logarithm Problem is discussed. Moreover, an alternative method of improving the security is also presented.

THE MODULI SPACES OF LORENTZIAN LEFT-INVARIANT METRICS ON THREE-DIMENSIONAL UNIMODULAR SIMPLY CONNECTED LIE GROUPS

  • Boucetta, Mohamed;Chakkar, Abdelmounaim
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.651-684
    • /
    • 2022
  • Let G be an arbitrary, connected, simply connected and unimodular Lie group of dimension 3. On the space 𝔐(G) of left-invariant Lorentzian metrics on G, there exists a natural action of the group Aut(G) of automorphisms of G, so it yields an equivalence relation ≃ on 𝔐(G), in the following way: h1 ≃ h2 ⇔ h2 = 𝜙*(h1) for some 𝜙 ∈ Aut(G). In this paper a procedure to compute the orbit space Aut(G)/𝔐(G) (so called moduli space of 𝔐(G)) is given.

HILBERT'S THEOREM 90 FOR NON-COMPACT GROUPS

  • Rovinsky, Marat
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1757-1771
    • /
    • 2017
  • Let K be a field and G be a group of its automorphisms. It follows from Speiser's generalization of Hilbert's Theorem 90, [10] that any K-semilinear representation of the group G is isomorphic to a direct sum of copies of K, if G is finite. In this note three examples of pairs (K, G) are presented such that certain irreducible K-semilinear representations of G admit a simple description: (i) with precompact G, (ii) K is a field of rational functions and G permutes the variables, (iii) K is a universal domain over field of characteristic zero and G its automorphism group. The example (iii) is new and it generalizes the principal result of [7].

A NOTE ON THE OPERATOR EQUATION $\alpha+\alpha^{-1}$=$\beta+\beta^{-1}$

  • Thaheem, A.B.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.167-170
    • /
    • 1986
  • Let M be a von Neumann algebra and .alpha., .betha. be *-automorphisms of M satisfying the operator equation .alpha.+.alpha.$^{-1}$ =.betha.+.betha.$^{-1}$ This operator equation has been extensively studied and many important decomposition theorems have been obtained by several authors (for instance see [4], [5], [2], [1]). Originally, this operator equation arose in the paper of Van Daele on the new approach of the Tomita-Takesaki theory in the case of modular operators ([7]). In the case of one-parameter automorphism groups, this equation has produced a bounded and completely positive map which can play a role similar to the infinitesimal generator (for details see [6] and [1]). A recent and one of the most important applications of this equation has been in developing an anglogue of the Tomita-Takesaki theory for Jordan algebras by Haagerup [3]. One general result of this theory is the following.

  • PDF

QUANTUM MARKOVIAN SEMIGROUPS ON QUANTUM SPIN SYSTEMS: GLAUBER DYNAMICS

  • Choi, Veni;Ko, Chul-Ki;Park, Yong-Moon
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.1075-1087
    • /
    • 2008
  • We study a class of KMS-symmetric quantum Markovian semigroups on a quantum spin system ($\mathcal{A},{\tau},{\omega}$), where $\mathcal{A}$ is a quasi-local algebra, $\tau$ is a strongly continuous one parameter group of *-automorphisms of $\mathcal{A}$ and $\omega$ is a Gibbs state on $\mathcal{A}$. The semigroups can be considered as the extension of semi groups on the nontrivial abelian subalgebra. Let $\mathcal{H}$ be a Hilbert space corresponding to the GNS representation con structed from $\omega$. Using the general construction method of Dirichlet form developed in [8], we construct the symmetric Markovian semigroup $\{T_t\}{_t_\geq_0}$ on $\mathcal{H}$. The semigroup $\{T_t\}{_t_\geq_0}$ acts separately on two subspaces $\mathcal{H}_d$ and $\mathcal{H}_{od}$ of $\mathcal{H}$, where $\mathcal{H}_d$ is the diagonal subspace and $\mathcal{H}_{od}$ is the off-diagonal subspace, $\mathcal{H}=\mathcal{H}_d\;{\bigoplus}\;\mathcal{H}_{od}$. The restriction of the semigroup $\{T_t\}{_t_\geq_0}$ on $\mathcal{H}_d$ is Glauber dynamics, and for any ${\eta}{\in}\mathcal{H}_{od}$, $T_t{\eta}$, decays to zero exponentially fast as t approaches to the infinity.

COMMUTING AUTOMORPHISM OF p-GROUPS WITH CYCLIC MAXIMAL SUBGROUPS

  • Vosooghpour, Fatemeh;Kargarian, Zeinab;Akhavan-Malayeri, Mehri
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.643-647
    • /
    • 2013
  • Let G be a group and let $p$ be a prime number. If the set $\mathcal{A}(G)$ of all commuting automorphisms of G forms a subgroup of Aut(G), then G is called $\mathcal{A}(G)$-group. In this paper we show that any $p$-group with cyclic maximal subgroup is an $\mathcal{A}(G)$-group. We also find the structure of the group $\mathcal{A}(G)$ and we show that $\mathcal{A}(G)=Aut_c(G)$. Moreover, we prove that for any prime $p$ and all integers $n{\geq}3$, there exists a non-abelian $\mathcal{A}(G)$-group of order $p^n$ in which $\mathcal{A}(G)=Aut_c(G)$. If $p$ > 2, then $\mathcal{A}(G)={\cong}\mathbb{Z}_p{\times}\mathbb{Z}_{p^{n-2}}$ and if $p=2$, then $\mathcal{A}(G)={\cong}\mathbb{Z}_2{\times}\mathbb{Z}_2{\times}\mathbb{Z}_{2^{n-3}}$ or $\mathbb{Z}_2{\times}\mathbb{Z}_2$.

GROUP-FREENESS AND CERTAIN AMALGAMATED FREENESS

  • Cho, Il-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.597-609
    • /
    • 2008
  • In this paper, we will consider certain amalgamated free product structure in crossed product algebras. Let M be a von Neumann algebra acting on a Hilbert space Hand G, a group and let ${\alpha}$ : G${\rightarrow}$ AutM be an action of G on M, where AutM is the group of all automorphisms on M. Then the crossed product $\mathbb{M}=M{\times}{\alpha}$ G of M and G with respect to ${\alpha}$ is a von Neumann algebra acting on $H{\bigotimes}{\iota}^2(G)$, generated by M and $(u_g)_g{\in}G$, where $u_g$ is the unitary representation of g on ${\iota}^2(G)$. We show that $M{\times}{\alpha}(G_1\;*\;G_2)=(M\;{\times}{\alpha}\;G_1)\;*_M\;(M\;{\times}{\alpha}\;G_2)$. We compute moments and cumulants of operators in $\mathbb{M}$. By doing that, we can verify that there is a close relation between Group Freeness and Amalgamated Freeness under the crossed product. As an application, we can show that if $F_N$ is the free group with N-generators, then the crossed product algebra $L_M(F_n){\equiv}M\;{\times}{\alpha}\;F_n$ satisfies that $$L_M(F_n)=L_M(F_{{\kappa}1})\;*_M\;L_M(F_{{\kappa}2})$$, whenerver $n={\kappa}_1+{\kappa}_2\;for\;n,\;{\kappa}_1,\;{\kappa}_2{\in}\mathbb{N}$.