• Title/Summary/Keyword: greenhouse structures

Search Result 92, Processing Time 0.031 seconds

International Trend of REDD Discussion and It's Policy Implication (REDD의 국제적 논의 동향과 정책적 함의)

  • Kim, Tongil;Kim, Seong-il;Teplyakov, Victor K.;Lee, Dong-Ho;Choi, Gayoung
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.548-557
    • /
    • 2011
  • REDD is recognized as a cost-effective and the most appropriate way of managing global GHG emissions. It is negotiated in a global context under the UNFCCC. The main issues of the REDD mechanism are divided into two parts: 1) developing forest carbon verification and measurement system for reducing emissions from deforestation and forest degradation, 2) establishing an appropriate system of incentives for developing countries. REDD can provide stability in carbon offset credits. However, the most important task is to establish a clear legal framework and appropriate governance structures with relevant countries. There is a wide opportunities for Republic of Korea to take a lead in cutting off greenhouse gasses in the Post-Kyoto period.

Field Sanitation and Foliar Application of Streptomyces padanus PMS-702 for the Control of Rice Sheath Blight

  • Yang, Chia-Jung;Huang, Tzu-Pi;Huang, Jenn-Wen
    • The Plant Pathology Journal
    • /
    • v.37 no.1
    • /
    • pp.57-71
    • /
    • 2021
  • Rice sheath blight (ShB), caused by Rhizoctonia solani Kühn AG1-IA, is one of the destructive rice diseases worldwide. The aims of this study were to develop biocontrol strategies focusing on field sanitation and foliar application with a biocontrol agent for ShB management. Streptomyces padanus PMS-702 showed a great antagonistic activity against R. solani. Fungichromin produced by S. padanus PMS-702, at 3.07 mg/l inhibited 50% mycelial growth, caused leakage of cytoplasm, and inhibited the formation of infection structures of R. solani. Fungichromin could reach to 802 mg/l when S. padanus PMS-702 was cultured in MACC broth for 6 days. Addition of 0.5% S. padanus PMS-702 broth into soil decreased the survival rate of the pathogen compared to the control. Soil amended with 0.5% S. padanus broth and 0.5% tea seed pomace resulted in the death of R. solani mycelia in the infested rice straws, and the germination of sclerotia was inhibited 21 days after treatment. Greenhouse trials revealed that S. padanus cultured in soybean meal-glucose (SMGC-2) medium after mixing with different surfactants could enhance its efficacy for inhibiting the pathogen. Of six surfactants tested, the addition of 2% tea saponin was the most effective in suppressing the pathogen. S. padanus broth after being fermented in SMGC-2, mixed with 2% tea saponin, diluted 100 fold, and sprayed onto rice plants significantly reduced ShB disease severity. Thus, S. padanus PMS-702 is an effective biocontrol agent. The efficacy of S. padanus PMS-702 for disease control could be improved through formulation.

Life Cycle Assessment of Steel Box Girder Bridge (강교량구조물의 환경적합성에 관한 전과정평가)

  • Kim, Sang-Hyo;Choi, Moon-Seock;Cho, Kwang-Il;Yoon, Ji-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.269-278
    • /
    • 2011
  • Recently, methods on minimizing environmental effect caused from human-made goods have been studied in various research fields. Such issue has been also spotlighted into the civil engineering field; however, application of environmental performance assessment on civil structures is very complicated, since they handles vast ranges of materials and has comparatively long life span with various construction stages. Thus, this study intended to apply environmental performance assessment into an ordinary type of steel box girder bridge, using most popular Life cycle assessment (LCA) procedures, which are called Survey-based method and Indirect method. For better comparison of two methods, greenhouse effect of the example bridge is considered. As result of analysis, total $CO_2$ emission is evaluated as 241.27 ton with Survey-based method while it is evaluated as 221.03 ton with Indirect method. It is also revealed that most $CO_2$ is generated from the process of manufacturing and producing construction materials. Such result indicates that the efficient design which secures certain level of structural safety with minimized input materials. It is considered that the specific LCA on civil structure performed in this study could be utilized to other civil structures for reasonable environmental performance assessment.

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.

Properties of Alkali-Activated Cement Mortar by Curing Method (양생 방법에 따른 알칼리활성 시멘트 모르타르의 특성)

  • Kim, Ji-Hoon;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Globally, there are environmental problems due to greenhouse gas emissions. $CO_2$ emissions rate of the cement industry is very high, but the continued demand of cement is needed in the future. In this study, in order to reduce the environmental impact of $CO_2$ emissions from cement production. The experiments were carried out for the development of non-sintered cement (have not undergone firing burning) by granulated ground blast furnace slag. In order to compare the characteristics by curing, an experiment was conducted by changing the curing conditions such as atmospheric steam curing, observe the mechanical properties for the measurement of flexural compressive strength by mortar, observe the chemical properties such as acid resistance, $Cl^-$ penetrate resistance and analyzed the mechanism of hydration by XRD, SEM experiments. From the experimental results, as compared with portland cement usually confirm the mechanical and chemical properties excellent, it is expected be possible to apply to the undersea, underwater and underground structures that require superior durability. In addition, based on the excellent compressive strength by steam curing, it is expected to be possible to utilize as a cement replacement material in the secondary product of concrete. In the future, to solve the problem through continued research, it will be expected to reduce the effect of environmental load and to be excellent economics.

Characteristics of Microbial Community Structures of the Methane Hydrate Sediments in the Ulleung Basin, East Sea of Korea (동해 울릉분지 메탄 하이드레이트 퇴적토의 미생물 군집 특성)

  • Shin, Ji-Hye;Nam, Ji-Hyun;Lee, Jin-Woo;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.191-200
    • /
    • 2014
  • Gas hydrates play a significant role in the global carbon cycle and climate change because methane, a greenhouse gas, can be released from the dissociation of gas hydrate. Anaerobic oxidation of methane (AOM) is an important process that consumes more than 90% of the methane released into the hydrosphere and atmosphere. In this study, the microbial community associated with the methane gas hydrate sediment in the Ulleung basin, East Sea of Korea (UBGH) was analyzed by phylogenetic analysis of the mcrA and 16S rRNA gene libraries. A vertical stratification of the dominating anaerobic methane oxidizer (ANME)-1 group was observed at the surface and the sulfate methane transition zone (SMTZ). The ANME-2c group was found to be dominant in the high methane layer. The archaea of marine benthic group B, which is commonly observed in the AOM region, accounted for more than 50% of the identifications in all sediments. Nitrate reducing bacteria were predominant at SMTZ (Halomonas: 56.5%) and high methane layer (Achromobacter: 52.6%), while sulfate reducing bacteria were not found in UBGH sediments. These results suggest that the AOM process may be carried out by a syntrophic consortium of ANME and nitrate reducing bacteria in the gas hydrates of the Ulleung Basin of the East Sea.

Effects of Tillage on Organic Matters and Microbial Communities in Organically Cultivated Corn Field Soils (유기농 옥수수밭에서 경운이 토양 유기물 함량 및 미생물군집에 미치는 영향)

  • Ahn, Dalrae;An, Nan-Hee;Kim, Da-Hye;Han, Byeong-Hak;You, Jaehong;Park, InCheol;Ahn, Jae-Hyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.65-74
    • /
    • 2020
  • BACKGROUND: Soil carbon sequestration has been investigated for a long time because of its potential to mitigate the greenhouse effect. No- or reduced tillage, crop rotations, or cover crops have been investigated and practiced to sequester carbon in soils but the roles of soil biota, particularly microorganisms, have been mostly ignored although they affect the amount and stability of soil organic matters. METHODS AND RESULTS: In this study we analyzed the organic matter and microbial community in organically cultivated corn field soils where no-tillage (NT) or conventional tillage (CT) had been practiced for about three years. The amounts of organic matter and recalcitrant carbon pool were 18.3 g/kg dry soil and 4.1 g C/kg dry soil, respectively in NT soils, while they were 12.4 and 2.5, respectively in CT soils. The amounts of RNA and DNA, and the copy numbers of bacterial 16S rRNA genes and fungal ITS sequences were higher in NT soils than in CT soils. No-tillage treatment increased the diversities of soil bacterial and fungal communities and clearly shifted the bacterial and fungal community structures. In NT soils the relative abundances of bacterial phyla known as copiotrophs, Betaproteobacteria and Bacteroidetes, increased while those known as oligotrophs, Acidobacteria and Verrucomicrobia, decreased compared to CT soils. The relative abundance of a fungal phylum, Glomeromycota, whose members are known as arbuscular mycorrhizal fungi, was about two time higher in NT soils than in CT soils, suggesting that the higher amount of organic matter in NT soils is related to its abundance. CONCLUSION: This study shows that no-tillage treatment greatly affects soil microbial abundance and community structure, which may affect the amount and stability of soil organic matter.

Estimation of Leaf Area, Leaf Fresh Weight, and Leaf Dry Weight of Irwin Mango Grown in Greenhouse using Leaf Length, Leaf Width, Petiole Length, and SPAD Value (엽장, 엽폭, 엽병장 및 SPAD 값을 이용한 온실 재배 어윈 망고의 엽면적, 엽생체중과 엽건물중 추정)

  • Jung, Dae Ho;Cho, Young Yeol;Lee, Jun Gu;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.146-152
    • /
    • 2016
  • Due to complicate canopy structures of Irwin mangoes grown in greenhouses, it is difficult to determine their growth parameters accurately. Leaf area, leaf fresh weight, and leaf dry weight are widely used as indicators to diagnose the tree growth. Therefore, it is necessary to establish models that can non-destructively estimate these growth indicators. The objective of this study was to establish regression models to estimate leaf area, leaf fresh weight, and leaf dry weight of Irwin mangoes (Mangifera indica L. cv. Irwin) by using leaf length, leaf width, petiole length, and SPAD value. The input values of leaf length, leaf width, petiole length, and SPAD value of 6-year old Irwin mangoes were measured, and the corresponding output values of leaf area, leaf fresh weight, and leaf dry weight were also measured. After 14 models were selected among the existing models, coefficients of the models were estimated by regression analysis. Three models with higher $R^2$ and lower RMSE values selected. In validation the $R^2$ values for the selected models were 0.967, 0.743, and 0.567 in the leaf area, leaf fresh weight, and leaf dry weight models, respectively. It is concluded that this models will be helpful to conveniently diagnose the growth of the Irwin mango.

[ $CO_2$ ] Sequestration in Geological Structures in the Maritime Area: A Preliminary Review (이산화탄소 해저 지질 구조 격리: 기술 현황과 제도 예비검토)

  • Hong, Gi-Hoon;Park, Chan-Ho;Kim, Han-Joon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.203-212
    • /
    • 2005
  • Anthropogenic emissions of greenhouse gases, particularly carbon dioxide($CO_2$) which arises mainly as wastes from the fossil fuel burning processes, are causing global warming. The effects of global warming become increasingly felt all over the world including sea level rise and extreme weather. The more direct consequences of the elevated atmospheric $CO_2$ on the ocean is the acidification of the surface ocean which brings a far reaching adverse impact on the life at sea and probably on the whole ecosystem of the planet. Improvement in energy efficiency and use of alternative energy sources are being made to reduce $CO_2$ emissions. However, a rapid transition to alternatives seems unachievable within a few decades due to the constraints on the associated technology and socio-economic factors in the world, since fossil fuels make up approximately 85% of the world's commercial energy demands. It has now been recognized that capture and geological sequestration of $CO_2$ could significantly reduce its emissions from fossil fuel utilization and therefore provides the means to rapidly achieve large reductions in $CO_2$ emissions(excerpts from London Convention, LC/SG 28, 2005). In Korea, well-developed sedimentary basins are spread over the vast continental shelf and slope regions, whereas, the land is densely populated and limited in area. Consequently, the offshore area is preferred to the land for the sites for geological sequestration. The utilization of the offshore area, however, may be subject to international agreements including London Convention. In this paper, the recent trends in technologies and regulations for $CO_2$ capture and geological sequestration are described to encourage its applications in Korea.

  • PDF

Scheme on Environmental Risk Assessment and Management for Carbon Dioxide Sequestration in Sub-seabed Geological Structures in Korea (이산화탄소 해양 지중저장사업의 환경위해성평가관리 방안)

  • Choi, Tae-Seob;Lee, Jung-Suk;Lee, Kyu-Tae;Park, Young-Gyu;Hwang, Jin-Hwan;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.307-319
    • /
    • 2009
  • Carbon dioxide capture and storage (CCS) technology has been regarded as one of the most possible and practical option to reduce the emission of carbon dioxide ($CO_2$) and consequently to mitigate the climate change. Korean government also have started a 10-year R&D project on $CO_2$ storage in sea-bed geological structure including gas field and deep saline aquifer since 2005. Various relevant researches are carried out to cover the initial survey of suitable geological structure storage site, monitoring of the stored $CO_2$ behavior, basic design of $CO_2$ transport and storage process and the risk assessment and management related to $CO_2$ leakage from engineered and geological processes. Leakage of $CO_2$ to the marine environment can change the chemistry of seawater including the pH and carbonate composition and also influence adversely on the diverse living organisms in ecosystems. Recently, IMO (International Maritime Organization) have developed the risk assessment and management framework for the $CO_2$ sequestration in sub-seabed geological structures (CS-SSGS) and considered the sequestration as a waste management option to mitigate greenhouse gas emissions. This framework for CS-SSGS aims to provide generic guidance to the Contracting Parties to the London Convention and Protocol, in order to characterize the risks to the marine environment from CS-SSGS on a site-specific basis and also to collect the necessary information to develop a management strategy to address uncertainties and any residual risks. The environmental risk assessment (ERA) plan for $CO_2$ storage work should include site selection and characterization, exposure assessment with probable leak scenario, risk assessment from direct and in-direct impact to the living organisms and risk management strategy. Domestic trial of the $CO_2$ capture and sequestration in to the marine geologic formation also should be accomplished through risk management with specified ERA approaches based on the IMO framework. The risk assessment procedure for $CO_2$ marine storage should contain the following components; 1) prediction of leakage probabilities with the reliable leakage scenarios from both engineered and geological part, 2) understanding on physio-chemical fate of $CO_2$ in marine environment especially for the candidate sites, 3) exposure assessment methods for various receptors in marine environments, 4) database production on the toxic effect of $CO_2$ to the ecologically and economically important species, and finally 5) development of surveillance procedures on the environmental changes with adequate monitoring techniques.

  • PDF