Browse > Article
http://dx.doi.org/10.7845/kjm.2014.4033

Characteristics of Microbial Community Structures of the Methane Hydrate Sediments in the Ulleung Basin, East Sea of Korea  

Shin, Ji-Hye (Department of Microbiology, Chungbuk National University)
Nam, Ji-Hyun (Department of Biology, Kyungsung University)
Lee, Jin-Woo (Department of Microbiology, Chungbuk National University)
Lee, Dong-Hun (Department of Microbiology, Chungbuk National University)
Publication Information
Korean Journal of Microbiology / v.50, no.3, 2014 , pp. 191-200 More about this Journal
Abstract
Gas hydrates play a significant role in the global carbon cycle and climate change because methane, a greenhouse gas, can be released from the dissociation of gas hydrate. Anaerobic oxidation of methane (AOM) is an important process that consumes more than 90% of the methane released into the hydrosphere and atmosphere. In this study, the microbial community associated with the methane gas hydrate sediment in the Ulleung basin, East Sea of Korea (UBGH) was analyzed by phylogenetic analysis of the mcrA and 16S rRNA gene libraries. A vertical stratification of the dominating anaerobic methane oxidizer (ANME)-1 group was observed at the surface and the sulfate methane transition zone (SMTZ). The ANME-2c group was found to be dominant in the high methane layer. The archaea of marine benthic group B, which is commonly observed in the AOM region, accounted for more than 50% of the identifications in all sediments. Nitrate reducing bacteria were predominant at SMTZ (Halomonas: 56.5%) and high methane layer (Achromobacter: 52.6%), while sulfate reducing bacteria were not found in UBGH sediments. These results suggest that the AOM process may be carried out by a syntrophic consortium of ANME and nitrate reducing bacteria in the gas hydrates of the Ulleung Basin of the East Sea.
Keywords
anaerobic oxidation of methane; East Sea; methane hydrate; nitrate reducing bacteria; Ulleung basin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M., Schreiber, F., Dutilh, B.E., Zedelius J., and de Beer, D. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543-548.   DOI
2 Inagaki, F., Nunoura, T., Nakagawa, S., Teske, A., Lever, M., Lauer, A., Suzuki, M., Takai, K., Delwiche, M., Colwell, F.S., and et al. 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc. Natl. Acad. Sci. USA 103, 2815-2820.   DOI   ScienceOn
3 Inagaki, F., Suzuki, M., Takai, K., Oida, H., Sakamoto, T., Aoki, K., Nealson, K.H., and Horikoshi, K. 2003. Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of Okhotsk. Appl. Environ. Microbiol. 69, 7224-7235.   DOI   ScienceOn
4 Jiang, H., Dong, H., Yu, B., Ye, Q., Shen, J., Rowe, H., and Zhang, C. 2008. Dominance of putative marine benthic Archaea in Qinghai Lake, north-western China. Environ. Microbiol. 10, 2355-2367.   DOI
5 Juottonen, H., Galand, P.E., and Yrjala, K. 2006. Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Res. Microbiol. 157, 914-921.   DOI
6 Kim, B., Cho, H., and Hyun, J. 2010. Community structure, diversity, and vertical distribution of archaea revealed by 16S rRNA gene analysis in the deep sea sediment of the Ulleung Basin, East Sea. Ocean Polar Res. 32, 309-319.   DOI   ScienceOn
7 Knittel, K. and Boetius, A. 2009. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311-334.   DOI   ScienceOn
8 Knittel, K., Losekann, T., Boetius, A., Kort, R., and Amann, R. 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71, 467-479.   DOI   ScienceOn
9 Sambrook, J. and Russell, D.W. 1989. Molecular cloning: A laboratory manual, 3rd ed., p. 213. Cold spring harbor laboratory press, New York, USA.
10 Young, R. and Bryant, E. 1992. Catastrophic wave erosion on the southeastern coast of Australia: Impact of the Lanai tsunamis ca. 105 ka? Geology 20, 199-202.   DOI
11 Segers, P., Vancanneyt, M., Pot, B., Torck, U., Hoste, B., Dewettinck, D., Falsen, E., Kersters, K., and De Vos, P. 1994. Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov., and Brevundimonas vesicularis comb. nov., respectively. Int. J. Syst. Bacteriol. 44, 499-510.   DOI   ScienceOn
12 Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.   DOI   ScienceOn
13 Shigematsu, T., Yumihara, K., Ueda, Y., Numaguchi, M., Morimura, S., and Kida, K. 2003. Delftia tsuruhatensis sp. nov., a terephthalateassimilating bacterium isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 53, 1479-1483.   DOI
14 Sorensen, K.B. and Teske, A. 2006. Stratified communities of active Archaea in deep marine subsurface sediments. Appl. Environ. Microbiol. 72, 4596-4603.   DOI
15 Spring, S., Schumann, P., and Sproer, C. 2005. Methanogenium frittonii Harris et al. 1996 is a later synonym of Methanoculleus thermophilus (Rivard and Smith 1982) Maestrojuan et al. 1990. Int. J. Syst. Evol. Microbiol. 55, 1097-1099.   DOI
16 Vetriani, C., Jannasch, H.W., MacGregor, B.J., Stahl, D.A., and Reysenbach, A.L. 1999. Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl. Environ. Microbiol. 65, 4375-4384.
17 Yabuuchi, E., Kawamura, Y., Kosako, Y., and Ezaki, T. 1998. Emendation of genus Achromobacter and Achromobacter xylosoxidans (Yabuuchi and Yano) and proposal of Achromobacter ruhlandii (Packer and Vishniac) comb. nov., Achromobacter piechaudii (Kiredjian et al.) comb. nov., and Achromobacter xylosoxidans subsp. denitrificans (Ruger and Tan) comb. nov. Microbiol. Immunol. 42, 429-438.   DOI
18 Nauhaus, K., Boetius, A., Kruger, M., and Widdel, F. 2002. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4, 296-305.   DOI   ScienceOn
19 Pachiadaki, M.G., Kallionaki, A., Dahlmann, A., De Lange, G.J., and Kormas, K.A. 2011. Diversity and spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano. Microb. Ecol. 62, 655-668.   DOI
20 Niemann, H., Losekann, T., de Beer, D., Elvert, M., Nadalig, T., Knittel, K., Amann, R., Sauter, E.J., Schluter, M., Klages, M., and et al. 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443, 854-858.   DOI   ScienceOn
21 Pukall, R., Buntefuss, D., Fruhling, A., Rohde, M., Kroppenstedt, R.M., Burghardt, J., Lebaron, P., Bernard, L., and Stackebrandt, E. 1999. Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the alpha-Proteobacteria. Int. J. Syst. Bacteriol. 49 Pt 2, 513-519.   DOI
22 Reeve, J.N., Nolling, J., Morgan, R.M., and Smith, D.R. 1997. Methanogenesis: genes, genomes, and who's on first? J. Bacteriol. 179, 5975-5986.   DOI
23 Roalkvam, I., Dahle, H., Chen, Y., Jorgensen, S.L., Haflidason, H., and Steen, I.H. 2012. Fine-scale community structure analysis of ANME in Nyegga sediments with high and low methane flux. Front. Microbiol. 3, 216.
24 Rochelle, P.A., Cragg, B.A., Fry, J.C., Parkes, R.J., and Weightman, A.J. 1994. Effect of sample handling on estimation of bacterial diversity in marine-sediments by 16S ribosomal-RNA gene sequence-analysis. FEMS Microbiol. Ecol. 15, 215-225.   DOI
25 Ryu, B., Riedel, M., Kim, J., Hyndman, R.D., Lee, Y., Chung, B., and Kim, I. 2009. Gas hydrates in the western deep-water Ulleung Basin, East Sea of Korea. Mar. Pet. Geol. 26, 1483-1498.   DOI   ScienceOn
26 Hallam, S.J., Putnam, N., Preston, C.M., Detter, J.C., Rokhsar, D., Richardson, P.M., and DeLong, E.F. 2004. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457-1462.   DOI
27 Hyun, J., Mok, J., You, O., Kim, D., and Choi, D. 2010. Variations and controls of sulfate reduction in the continental slope and rise of the Ulleung Basin off the Southeast Korean upwelling system in the East Sea. Geomicrobiol. J. 27, 212-222.   DOI
28 Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., and Tyson, G.W. 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567-570.   DOI
29 Harrison, B.K., Zhang, H., Berelson, W., and Orphan, V.J. 2009. Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California). Appl. Environ. Microbiol. 75, 1487-1499.   DOI
30 He, R., Wooller, M.J., Pohlman, J.W., Quensen, J., Tiedje, J.M., and Leigh, M.B. 2012. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments. ISME J. 6, 1937-1948.   DOI
31 Lee, J., Kwon, K.K., Azizi, A., Oh, H., Kim, W., Bahk, J., Lee, D., and Lee, J. 2013a. Microbial community structures of methane hydrate-bearing sediments in the Ulleung Basin, East Sea of Korea. Mar. Pet. Geol. 47, 136-146.   DOI   ScienceOn
32 Lloyd, K.G., Lapham, L., and Teske, A. 2006. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl. Environ. Microbiol. 72, 7218-7230.   DOI
33 Long, C., Lu, X.L., Gao, Y., Jiao, B.H., and Liu, X.Y. 2011. Description of a Sulfitobacter strain and its extracellular cyclodipeptides. Evid. Base. Compl. Alternat. Med. 2011, 393752.
34 Mata, J.A., Martinez-Canovas, J., Quesada, E., and Bejar, V. 2002. A Detailed phenotypic characterisation of the type strains of Halomonas species. Syst. Appl. Microbiol. 25, 360-375.   DOI   ScienceOn
35 Lee, D., Kim, J., Bahk, J., Cho, H., Hyun, J., and Shin, K. 2013b. Geochemical signature related to lipid biomarkers of ANMEs in gas hydrate-bearing sediments in the Ulleung Basin, East Sea (Korea). Mar. Pet. Geol. 47, 125-135.   DOI   ScienceOn
36 Kopke, B., Wilms, R., Engelen, B., Cypionka, H., and Sass, H. 2005. Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl. Environ. Microbiol. 71, 7819-7830.   DOI
37 Kvenvolden, K.A. 1999. Potential effects of gas hydrate on human welfare. Proc. Natl. Acad. Sci. USA 96, 3420-3426.   DOI   ScienceOn
38 Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 125-175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics. John Wiley & Sons, Chichester, UK.
39 Caldwell, S.L., Laidler, J.R., Brewer, E.A., Eberly, J.O., Sandborgh, S.C., and Colwell, F.S. 2008. Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ. Sci. Technol. 42, 6791-6799.   DOI   ScienceOn
40 Canfield, D.E., Kristensen, E., and Thamdrup, B. 2005. The Methane Cycle, pp. 383-418. In Canfield, D.E., Kristensen, E., and Thamdrup, B. (eds). Advances in Marine Biology. Academic Press. Orlando, USA.
41 Constan, L. 2009. Ms. thesis. The University of British Columbia, Vancouver, Canada.
42 Costa, C., Dijkema, C., Friedrich, M., Garcia-Encina, P., Fernandez-Polanco, F., and Stams, A. 2000. Denitrification with methane as electron donor in oxygen-limited bioreactors. Appl. Microbiol. Biotechnol. 53, 754-762.   DOI
43 DeLong, E.F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89, 5685-5689.   DOI   ScienceOn
44 Raghoebarsing, A.A., Pol, A., van de Pas-Schoonen, K.T., Smolders, A.J.P., Ettwig, K.F., Rijpstra, W.I.C., Schouten, S., Damste, J.S.S., Op den Camp, H.J.M., and et al. 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918-921.   DOI   ScienceOn